ResearchPad - placenta https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Placental transfer of Letermovir &amp; Maribavir in the <i>ex vivo</i> human cotyledon perfusion model. New perspectives for <i>in utero</i> treatment of congenital cytomegalovirus infection]]> https://www.researchpad.co/article/elastic_article_11236 Congenital cytomegalovirus infection can lead to severe sequelae. When fetal infection is confirmed, we hypothesize that fetal treatment could improve the outcome. Maternal oral administration of an effective drug crossing the placenta could allow fetal treatment. Letermovir (LMV) and Maribavir (MBV) are new CMV antivirals, and potential candidates for fetal treatment.MethodsThe objective was to investigate the placental transfer of LMV and MBV in the ex vivo method of the human perfused cotyledon. Term placentas were perfused, in an open-circuit model, with LMV or MBV at concentrations in the range of clinical peak plasma concentrations. Concentrations were measured using ultraperformance liquid chromatography coupled with tandem mass spectrometry. Mean fetal transfer rate (FTR) (fetal (FC) /maternal concentration), clearance index (CLI), accumulation index (AI) (retention of each drug in the cotyledon tissue) were measured. Mean FC were compared with half maximal effective concentrations of the drugs (EC50(LMV) and EC50(MBV)).ResultsFor LMV, the mean FC was (± standard deviation) 1.1 ± 0.2 mg/L, 1,000-fold above the EC50(LMV). Mean FTR, CLI and AI were 9 ± 1%, 35 ± 6% and 4 ± 2% respectively. For MBV, the mean FC was 1.4 ± 0.2 mg/L, 28-fold above the EC50(MBV). Mean FTR, CLI and AI were 10 ± 1%, 50 ± 7% and 2 ± 1% respectively.ConclusionsDrugs’ concentrations in the fetal side should be in the range for in utero treatment of fetuses infected with CMV as the mean FC was superior to the EC50 for both molecules. ]]> <![CDATA[OR14-01 FSTL3 Neutralizing Antibodies Restore Function to Diabetic Mouse and Human Islets: A New Approach for Treating Diabetes]]> https://www.researchpad.co/article/elastic_article_6947 Activin, GDF11 and myostatin are structurally related members of the TGFbeta superfamily of growth factors with many biological roles in animal models and humans. Their actions are neutralized by extracellular proteins such as follistatin and follistatin like-3 (FSTL3). We have previously demonstrated that genetic inactivation of Fstl3 results in enlarged pancreatic islets containing increased numbers of beta cells that produce more insulin in response to glucose compared to wild type litter mates. We further discovered that at least some of these new beta cells arise via transdifferentiation from alpha cells. We also demonstrated that functional human islets from normal donors produce very high levels of activin. In contrast, activin biosynthesis is vastly reduced and FSTL3 synthesis is significantly increased in human islets from diabetic donors suggesting that activin is critical for normal insulin production. This was substantiated by direct treatment of human diabetic islets with activin which restored their response to glucose. These observations support the hypothesis that an FSTL3 neutralizing antibody would constitute a novel therapeutic approach to curing diabetes through restoring beta cell function as well as accelerating generation of new beta cells through transdifferentiation. To test this hypothesis, we produced a mouse monoclonal antibody that neutralized hFSTL3 (FP-101), thereby releasing bioactive activin, GDF11, and myostatin. We have now tested this antibody for biological activity in vitro on mouse and human islets. We used islets from high fat diet (HFD) treated mice to model diabetes-inducing effects of obesity as well as 24-hour incubation in hyperglycemic (33 mM glucose) medium to create human islets that lose responsiveness to high glucose as a model for human diabetes. In mouse islets we found that stimulation of normal (chow diet) islets by high glucose produced a stimulation index (SI) of 3.5 that was reduced to 2 in HFD islets. Treatment with activin, FP-101, or a commercial polyclonal antibody to mFSTL3 all increased response of HFD islets to elevated glucose and partially restored SI to normal levels. In human islets, hyperglycemia eliminated the normal (2.5 SI) response to high glucose while activin or FP-101 treatments dose-responsively restored this response. These results demonstrate that anti-FSTL3 therapy can restore function to compromised beta cells from mouse and human diabetes models. The observation that activin has the same action as anti-FSTL3 antibody indicates that FP-101 works through enhancing the activin signaling pathway. Finally, these results demonstrate that the FSTL3-activin pathway is an important regulator of beta cell function in humans as well as mice, supporting further development of this therapy as a diabetes treatment.

]]>
<![CDATA[OR14-03 The Transcriptional Coactivation Function of EHMT2 Restricts Chronic Glucocorticoid Exposure Induced Insulin Resistance]]> https://www.researchpad.co/article/elastic_article_6870 Glucocorticoids are required for metabolic adaptations during times of stress. However, chronic glucocorticoid exposure is associated with metabolic disorders such as insulin resistance. Glucocorticoids mainly convey their signals through an intracellular glucocorticoid receptor (GR). GR is a transcription factor that requires interactions with transcriptional coregulators to modulate the transcription of GR primary target genes, which in turn regulate specific aspects of physiology. Euchromatic Histone Methyltransferase 2 (Ehmt2) is a transcriptional coregulator for GR that can act as a corepressor or a coactivator. We found that glucocorticoid-induced insulin resistance was exacerbated when Ehmt2 levels were reduced in the liver. Intriguingly, this phenotype resulted from the transactivation function of Ehmt2. This is because a mutation at the lysine 182 automethylation site, which is required for the coactivation but not the corepression function of Ehmt2, results in similar exacerbated GC-induced insulin resistance. These results suggest that Ehmt2 coactivation dependent GR primary target genes restrict the extent of glucocorticoid-induced insulin resistance. Gene expression analysis identified Dusp4 (a.k.a. Mkp-2) as an Ehmt2 coactivation dependent GR-activated gene, which when overexpressed in liver, attenuated glucocorticoid-induced insulin resistance. Thus, we have identified a novel GR-Ehmt2-Dusp4 axis that plays a key role in controlling the extent of the development of insulin resistance. Notably, the classical view of how GC induce hepatic insulin resistance is that GR activates genes that inhibit insulin signaling and enhance hepatic gluconeogenesis. Our study, however, provides a revolutionary concept in which the extent of GC-induced insulin resistance is controlled by the balance of GR-activated genes that promote insulin sensitivity or insulin resistance.

]]>
<![CDATA[OR14-02 Circadian Regulation of Chromatin State Mediates Pancreatic Islet Incretin Response]]> https://www.researchpad.co/article/elastic_article_6016 The circadian clock is programmed by an autoregulatory transcription feedback loop present in brain and peripheral tissues that coordinates metabolism with nutritional state and the sleep-wake cycle. Epidemiologic and genetic studies indicate circadian disruption as a risk factor in the development of diabetes. We have demonstrated that conditional ablation of the β cell clock in adult life leads to hypoinsulinemic diabetes, and through mRNA-sequencing in mouse and human islets we revealed clock control of gene networks involved in insulin secretion, nutrient sensing, and exocytosis. A remaining question is: How does the core molecular clock modulate time-of-day dependent chromatin state to regulate pancreatic islet response to glucose and insulin secretagogues? Here we report that loss of the pancreatic β cell molecular clock results in closed chromatin at cAMP-responsive gene regulatory elements and dysregulated cAMP-dependent coregulator recruitment following cAMP agonism, consistent with a role for the molecular clock in mediating cell response to environmental stimuli. Further, tandem analyses of ATAC- and ChIP-sequencing in synchronized islets revealed dynamic chromatin accessibility across the 24-hour cycle at genes regulating insulin secretion and at genomic regions enriched for signal-inducible and circadian transcription factor motifs. Our genome-wide sequencing reveals a new role for the clock in global chromatin remodeling underlying the incretin response in pancreatic β cells.

]]>
<![CDATA[The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study]]> https://www.researchpad.co/article/N6fc22072-15f3-4c64-b34f-34474f5cf931

The new type of pneumonia caused by the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) has been declared as a global public health concern by WHO. As of April 3, 2020, more than 1,000,000 human infections have been diagnosed around the world, which exhibited apparent person-to-person transmission characteristics of this virus. The capacity of vertical transmission in SARS-CoV-2 remains controversial recently. Angiotensin-converting enzyme 2 (ACE2) is now confirmed as the receptor of SARS-CoV-2 and plays essential roles in human infection and transmission. In present study, we collected the online available single-cell RNA sequencing (scRNA-seq) data to evaluate the cell specific expression of ACE2 in maternal-fetal interface as well as in multiple fetal organs. Our results revealed that ACE2 was highly expressed in maternal-fetal interface cells including stromal cells and perivascular cells of decidua, and cytotrophoblast and syncytiotrophoblast in placenta. Meanwhile, ACE2 was also expressed in specific cell types of human fetal heart, liver and lung, but not in kidney. And in a study containing series fetal and post-natal mouse lung, we observed ACE2 was dynamically changed over the time, and ACE2 was extremely high in neonatal mice at post-natal day 1~3. In summary, this study revealed that the SARS-CoV-2 receptor was widely spread in specific cell types of maternal-fetal interface and fetal organs. And thus, both the vertical transmission and the placenta dysfunction/abortion caused by SARS-CoV-2 need to be further carefully investigated in clinical practice.

]]>
<![CDATA[Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon]]> https://www.researchpad.co/article/5c4b7f5dd5eed0c4848412b9

Zika virus (ZIKV) infection during pregnancy in humans is associated with an increased incidence of congenital anomalies including microcephaly as well as fetal death and miscarriage and collectively has been referred to as Congenital Zika Syndrome (CZS). Animal models for ZIKV infection in pregnancy have been developed including mice and non-human primates (NHPs). In macaques, fetal CZS outcomes from maternal ZIKV infection range from none to significant. In the present study we develop the olive baboon (Papio anubis), as a model for vertical transfer of ZIKV during pregnancy. Four mid-gestation, timed-pregnant baboons were inoculated with the French Polynesian ZIKV isolate (104 ffu). This study specifically focused on the acute phase of vertical transfer. Dams were terminated at 7 days post infection (dpi; n = 1), 14 dpi (n = 2) and 21 dpi (n = 1). All dams exhibited mild to moderate rash and conjunctivitis. Viremia peaked at 5–7 dpi with only one of three dams remaining mildly viremic at 14 dpi. An anti-ZIKV IgM response was observed by 14 dpi in all three dams studied to this stage, and two dams developed a neutralizing IgG response by either 14 dpi or 21 dpi, the latter included transfer of the IgG to the fetus (cord blood). A systemic inflammatory response (increased IL2, IL6, IL7, IL15, IL16) was observed in three of four dams. Vertical transfer of ZIKV to the placenta was observed in three pregnancies (n = 2 at 14 dpi and n = 1 at 21 dpi) and ZIKV was detected in fetal tissues in two pregnancies: one associated with fetal death at ~14 dpi, and the other in a viable fetus at 21 dpi. ZIKV RNA was detected in the fetal cerebral cortex and other tissues of both of these fetuses. In the fetus studied at 21 dpi with vertical transfer of virus to the CNS, the frontal cerebral cortex exhibited notable defects in radial glia, radial glial fibers, disorganized migration of immature neurons to the cortical layers, and signs of pathology in immature oligodendrocytes. In addition, indices of pronounced neuroinflammation were observed including astrogliosis, increased microglia and IL6 expression. Of interest, in one fetus examined at 14 dpi without detection of ZIKV RNA in brain and other fetal tissues, increased neuroinflammation (IL6 and microglia) was observed in the cortex. Although the placenta of the 14 dpi dam with fetal death showed considerable pathology, only minor pathology was noted in the other three placentas. ZIKV was detected immunohistochemically in two placentas (14 dpi) and one placenta at 21 dpi but not at 7 dpi. This is the first study to examine the early events of vertical transfer of ZIKV in a NHP infected at mid-gestation. The baboon thus represents an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs.

]]>
<![CDATA[Texture analysis of magnetic resonance images of the human placenta throughout gestation: A feasibility study]]> https://www.researchpad.co/article/5c50c45fd5eed0c4845e865c

As fetal gestational age increases, other modalities such as ultrasound have demonstrated increased levels of heterogeneity in the normal placenta. In this study, we introduce and apply ROI-based texture analysis to a retrospective fetal MRI database to characterize the second-order statistics of placenta and to evaluate the relationship between heterogeneity and gestational age. Positive correlations were observed for several Haralick texture metrics derived from fetal-brain specific T2-weighted and gravid uterus T1-weighted and T2-weighted images, confirming a quantitative increase in placental heterogeneity with gestational age. Our study shows the importance of identifying baseline MR textural changes at certain gestational ages from which placental diseased states may be compared. Specifically, when evaluating for placental invasion or insufficiency, findings should be evaluated in the context of the normal placental aging process, which occurs throughout gestation.

]]>
<![CDATA[Roles of GP33, a guinea pig cytomegalovirus-encoded G protein-coupled receptor homolog, in cellular signaling, viral growth and inflammation in vitro and in vivo]]> https://www.researchpad.co/article/5c25453fd5eed0c48442c35a

Cytomegaloviruses (CMVs) encode cellular homologs to evade host immune functions. In this study, we analyzed the roles of GP33, a guinea pig CMV (GPCMV)-encoded G protein-coupled receptor (GPCR) homolog, in cellular signaling, viral growth and pathogenesis. The cDNA structure of GP33 was determined by RACE. The effects of GP33 on some signaling pathways were analyzed in transient transfection assays. The redET two-step recombination system for a BAC containing the GPCMV genome was used to construct a mutant GPCMV containing an early stop codon in the GP33 gene (Δ33) and a rescued GPCMV (r33). We found the following: 1) GP33 activated the CRE- and NFAT-, but not the NFκB-mediated signaling pathway. 2) GP33 was dispensable for infection in tissue cultures and in normal animals. 3) In pregnant animals, viral loads of r33 in the livers, lungs, spleens, and placentas at 6 days post-infection were higher than those of Δ33, although the viruses were cleared by 3 weeks post-infection. 4) The presence of GP33 was associated with frequent lesions, including alveolar hemorrhage in the lungs, and inflammation in the lungs, livers, and spleens of the dams. Our findings suggest that GP33 has critical roles in the pathogenesis of GPCMV during pregnancy. We hypothesize that GP33-mediated signaling activates cytokine secretion from the infected cells, which results in inflammation in some of the maternal organs and the placentas. Alternatively, GP33 may facilitate transient inflammation that is induced by the chemokine network specific to the pregnancy.

]]>
<![CDATA[Genome-wide maps of distal gene regulatory enhancers active in the human placenta]]> https://www.researchpad.co/article/5c2e7fefd5eed0c48451c4e4

Placental dysfunction is implicated in many pregnancy complications, including preeclampsia and preterm birth (PTB). While both these syndromes are influenced by environmental risk factors, they also have a substantial genetic component that is not well understood. Precisely controlled gene expression during development is crucial to proper placental function and often mediated through gene regulatory enhancers. However, we lack accurate maps of placental enhancer activity due to the challenges of assaying the placenta and the difficulty of comprehensively identifying enhancers. To address the gap in our knowledge of gene regulatory elements in the placenta, we used a two-step machine learning pipeline to synthesize existing functional genomics studies, transcription factor (TF) binding patterns, and evolutionary information to predict placental enhancers. The trained classifiers accurately distinguish enhancers from the genomic background and placental enhancers from enhancers active in other tissues. Genomic features collected from tissues and cell lines involved in pregnancy are the most predictive of placental regulatory activity. Applying the classifiers genome-wide enabled us to create a map of 33,010 predicted placental enhancers, including 4,562 high-confidence enhancer predictions. The genome-wide placental enhancers are significantly enriched nearby genes associated with placental development and birth disorders and for SNPs associated with gestational age. These genome-wide predicted placental enhancers provide candidate regions for further testing in vitro, will assist in guiding future studies of genetic associations with pregnancy phenotypes, and aid interpretation of potential mechanisms of action for variants found through genetic studies.

]]>
<![CDATA[Ovarian reserve after uterine artery embolization in women with morbidly adherent placenta: A cohort study]]> https://www.researchpad.co/article/5c0993cbd5eed0c4842ad977

Objective

To evaluate ovarian reserve in women after preservative cesarean delivery using uterine artery embolization due to morbidly adherent placenta.

Study design

A historical cohort study including all women admitted to a single tertiary care center, with morbidly adherent placenta that had preservative cesarean delivery with bilateral uterine artery embolization. Inclusion criteria included gestational age >24 weeks, singleton pregnancy and placenta increta / percreta. Exclusion criteria included maternal age > 43 years old and cesarean hysterectomy. Control group included women attending the infertility clinic due to male factor or single women conceiving via sperm donation, matched by age. Blood samples were collected on day 2–5 of menstruations for hormonal profile and Anti Mullarian Hormone (AMH) levels. Primary outcome was ovarian reserve evaluated by the levels of AMH.

Results

59 women underwent preservative cesarean delivery using uterine artery embolization during the study period. 21 women met inclusion criteria (33.9%) and were matched controls (n = 40). Circulating levels of E2 and FSH did not differ significantly between the two groups (p = 0.665, p = 0.396, respectively). AMH was lower in the study group (median 0.8 IQR 0.44–1.80) compared to the controls (median 2.08 IQR 1.68–3.71) (p = 0.001). This finding was consistent in linear multivariate regression analysis where the group of cesarean delivery using bilateral artery embolization due to placenta accrete was significantly predictive for the levels of AMH (B = -1.308, p = 0.012).

Conclusion

Women post preservative cesarean delivery using uterine artery embolization due to placenta accrete have lower ovarian reserve compare to controls matched by age.

]]>
<![CDATA[Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing]]> https://www.researchpad.co/article/5b28b271463d7e11c3009599

During pregnancy, the placenta protects the fetus against the maternal immune response, as well as bacterial and viral pathogens. Bacterial pathogens that have evolved specific mechanisms of breaching this barrier, such as Listeria monocytogenes, present a unique opportunity for learning how the placenta carries out its protective function. We previously identified the L. monocytogenes protein Internalin P (InlP) as a secreted virulence factor critical for placental infection. Here, we show that InlP, but not the highly similar L. monocytogenes internalin Lmo2027, binds to human afadin (encoded by AF-6), a protein associated with cell-cell junctions. A crystal structure of InlP reveals several unique features, including an extended leucine-rich repeat (LRR) domain with a distinctive Ca2+-binding site. Despite afadin’s involvement in the formation of cell-cell junctions, MDCK epithelial cells expressing InlP displayed a decrease in the magnitude of the traction stresses they could exert on deformable substrates, similar to the decrease in traction exhibited by AF-6 knock-out MDCK cells. L. monocytogenes ΔinlP mutants were deficient in their ability to form actin-rich protrusions from the basal face of polarized epithelial monolayers, a necessary step in the crossing of such monolayers (transcytosis). A similar phenotype was observed for bacteria expressing an internal in-frame deletion in inlP (inlP ΔLRR5) that specifically disrupts its interaction with afadin. However, afadin deletion in the host cells did not rescue the transcytosis defect. We conclude that secreted InlP targets cytosolic afadin to specifically promote L. monocytogenes transcytosis across the basal face of epithelial monolayers, which may contribute to the crossing of the basement membrane during placental infection.

]]>
<![CDATA[OR14-05 Hepatocyte Peroxisome Proliferator-Activated Receptor Gamma (PPARG) Offsets the Anti-Steatogenic Effects of Thiazolidinediones in Obese Male Mice]]> https://www.researchpad.co/article/N5bee7ad1-85ac-4fb4-b98c-c690e1f77d8f <![CDATA[OR14-04 A Novel ERRα-Dependent Insulin Signaling Pathway]]> https://www.researchpad.co/article/N89dbbc83-6805-4cf8-8b5a-98ce76ede256 <![CDATA[OR14-06 Inhibition of Protein Kinase C-beta2 Phosphorylation Restores Nuclear Factor-Kappa B Activation and Improves Peripheral Arterial Disease in Diabetes]]> https://www.researchpad.co/article/N36519875-21fb-4e36-9492-b00099ecde5f <![CDATA[OR14-07 Association Between Placental Glucose Uptake and Protein O-Glcnacylation and Birth Outcomes in Obese Non-Diabetic Mothers]]> https://www.researchpad.co/article/N4452e1c8-e394-4662-aa30-6ddb6a7204ab <![CDATA[Identification of Eight Different Isoforms of the Glucocorticoid Receptor in Guinea Pig Placenta: Relationship to Preterm Delivery, Sex and Betamethasone Exposure]]> https://www.researchpad.co/article/5989db42ab0ee8fa60bd71ec

The placental glucocorticoid receptor (GR) is central to glucocorticoid signalling and for mediating steroid effects on pathways associated with fetal growth and lung maturation but the GR has not been examined in the guinea pig placenta even though this animal is regularly used as a model of preterm birth and excess glucocorticoid exposure. Guinea pig dams received subcutaneous injections of either vehicle or betamethasone at 24 and 12 hours prior to preterm or term caesarean-section delivery. At delivery pup and organ weights were recorded. Placentae were dissected, weighed and analysed using Western blot to examine GR isoform expression in nuclear and cytoplasmic extracts. A comparative examination of the guinea pig GR gene identified it is capable of producing seven of the eight translational GR isoforms which include GRα-A, C1, C2, C3, D1, D2, and D3. GRα-B is not produced in the Guinea Pig. Total GR antibody identified 10 specific bands from term (n = 29) and preterm pregnancies (n = 27). Known isoforms included GRγ, GRα A, GRβ, GRP, GRA and GRα D1-3. There were sex and gestational age differences in placental GR isoform expression. Placental GRα A was detected in the cytoplasm of all groups but was significantly increased in the cytoplasm and nucleus of preterm males and females exposed to betamethasone and untreated term males (KW-ANOVA, P = 0.0001, P = 0.001). Cytoplasmic expression of GRβ was increased in female preterm placentae and preterm and term male placentae exposed to betamethasone (P = 0.01). Nuclear expression of GRβ was increased in all placentae exposed to betamethasone (P = 0.0001). GRα D2 and GRα D3 were increased in male preterm placentae when exposed to betamethasone (P = 0.01, P = 0.02). The current data suggests the sex-specific placental response to maternal betamethasone may be dependent on the expression of a combination of GR isoforms.

]]>
<![CDATA[Promoter Methylation Pattern Controls Corticotropin Releasing Hormone Gene Activity in Human Trophoblasts]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc433

Placental CRH production increases with advancing pregnancy in women and its course predicts gestational length. We hypothesized that CRH gene expression in the placenta is epigenetically controlled setting gestational trajectories characteristic of normal and pathological pregnancies. Here we determined histone modification and DNA methylation levels and DNA methylation patterns at the CRH promoter in primary trophoblast cultures by chromatin immunoprecipitation combined with clonal bisulfite sequencing and identified the transcriptionally active epialleles that associate with particular histone modifications and transcription factors during syncytialisation and cAMP-stimulation. CRH gene expression increased during syncytial differentiation and cAMP stimulation, which was associated with increased activating and decreased repressive histone modification levels at the promoter. DNA methylation levels remained unchanged. The nine CpGs of the CRH proximal promoter were partially and allele-independently methylated displaying many (>100) epialleles. RNA-polymerase-II (Pol-II) bound only to three particular epialleles in cAMP-stimulated cells, while phospho-cAMP response element-binding protein (pCREB) bound to only one epiallele, which was different from those selected by Pol-II. Binding of TATA-binding protein increased during syncytial differentiation preferentially at epialleles compatible with Pol-II and pCREB binding. Histone-3 acetylation was detected only at epialleles targeted by Pol-II and pCREB, while gene activating histone-4 acetylation and histone-3-lysine-4 trimethylation occurred at CRH epialleles not associated with Pol-II or pCREB. The suppressive histone-3-lysine-27 trimethyl and–lysine-9 trimethyl modifications showed little or no epiallele preference. The epiallele selectivity of activating histone modifications and transcription factor binding demonstrates the epigenetic and functional diversity of the CRH gene in trophoblasts, which is controlled predominantly by the patterns, not the overall extent, of promoter methylation. We propose that conditions impacting on epiallele distribution influence the number of transcriptionally active CRH gene copies in the trophoblast cell population determining the gestational trajectory of placental CRH production in normal and pathological pregnancies.

]]>
<![CDATA[Human Oocyte-Derived Methylation Differences Persist in the Placenta Revealing Widespread Transient Imprinting]]> https://www.researchpad.co/article/5989d9eeab0ee8fa60b6d6b4

Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation.

]]>
<![CDATA[MSX2 Induces Trophoblast Invasion in Human Placenta]]> https://www.researchpad.co/article/5989dab9ab0ee8fa60bade75

Normal implantation depends on appropriate trophoblast growth and invasion. Inadequate trophoblast invasion results in pregnancy-related disorders, such as early miscarriage and pre-eclampsia, which are dangerous to both the mother and fetus. Msh Homeobox 2 (MSX2), a member of the MSX family of homeobox proteins, plays a significant role in the proliferation and differentiation of various cells and tissues, including ectodermal organs, teeth, and chondrocytes. Recently, MSX2 was found to play important roles in the invasion of cancer cells into adjacent tissues via the epithelial-mesenchymal transition (EMT). However, the role of MSX2 in trophoblastic invasion during placental development has yet to be explored. In the present study, we detected MSX2 expression in cytotrophoblast, syncytiotrophoblast, and extravillous cytotrophoblast cells of first or third trimester human placentas via immunohistochemistry analysis. Furthermore, we found that the in vitro invasive ability of HTR8/SVneo cells was enhanced by exogenous overexpression of MSX2, and that this effect was accompanied by increased protein expression of matrix metalloproteinase-2 (MMP-2), vimentin, and β-catenin. Conversely, treatment of HTR8/SVneo cells with MSX2-specific siRNAs resulted in decreased protein expression of MMP-2, vimentin, and β-catenin, and reduced invasion levels in a Matrigel invasion test. Notably, however, treatment with the MSX2 overexpression plasmid and the MSX2 siRNAs had no effect on the mRNA expression levels of β-catenin. Meanwhile, overexpression of MSX2 and treatment with the MSX2-specific siRNA resulted in decreased and increased E-cadherin expression, respectively, in JEG-3 cells. Lastly, the protein expression levels of MSX2 were significantly lower in human pre-eclamptic placental villi than in the matched control placentas. Collectively, our results suggest that MSX2 may induce human trophoblast cell invasion, and dysregulation of MSX2 expression may be associated with pre-eclampsia.

]]>
<![CDATA[Systematic Review of Micro-RNA Expression in Pre-Eclampsia Identifies a Number of Common Pathways Associated with the Disease]]> https://www.researchpad.co/article/5989da52ab0ee8fa60b8e20d

Background

Pre-eclampsia (PE) is a complex, multi-systemic condition of pregnancy which greatly impacts maternal and perinatal morbidity and mortality. MicroRNAs (miRs) are differentially expressed in PE and may be important in helping to understand the condition and its pathogenesis.

Methods

Case-control studies investigating expression of miRs in PE were collected through a systematic literature search. Data was extracted and compared from 58 studies to identify the most promising miRs associated with PE pathogenesis and identify areas of methodology which could account for often conflicting results.

Results

Some of the most frequently differentially expressed miRs in PE include miR-210, miR-223 and miR-126/126* which associate strongly with the etiological domains of hypoxia, immunology and angiogenesis. Members of the miR-515 family belonging to the imprinted chromosome 19 miR cluster with putative roles in trophoblast invasion were also found to be differentially expressed. Certain miRs appear to associate with more severe forms of PE such as miR-210 and the immune-related miR-181a and miR-15 families. Patterns of miR expression may help pinpoint key pathways (e.g. IL-6/miR-223/STAT3) and aid in untangling the heterogeneous nature of PE. The detectable presence of many PE-associated miRs in antenatal circulatory samples suggests their usefulness as predictive biomarkers. Further progress in ascertaining the clinical value of miRs and in understanding how they might contribute to pathogenesis is predicated upon resolving current methodological challenges in studies. These include differences in diagnostic criteria, cohort characteristics, sampling technique, RNA isolation and platform-dependent variation in miR profiling.

Conclusion

Reviewing studies of PE-associated miRs has revealed their potential as informants of underlying target genes and pathways relating to PE pathogenesis. However, the incongruity in results across current studies hampers their capacity to be useful biomarkers of the condition.

]]>