ResearchPad - placental-cotyledon Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Placental transfer of Letermovir &amp; Maribavir in the <i>ex vivo</i> human cotyledon perfusion model. New perspectives for <i>in utero</i> treatment of congenital cytomegalovirus infection]]> Congenital cytomegalovirus infection can lead to severe sequelae. When fetal infection is confirmed, we hypothesize that fetal treatment could improve the outcome. Maternal oral administration of an effective drug crossing the placenta could allow fetal treatment. Letermovir (LMV) and Maribavir (MBV) are new CMV antivirals, and potential candidates for fetal treatment.MethodsThe objective was to investigate the placental transfer of LMV and MBV in the ex vivo method of the human perfused cotyledon. Term placentas were perfused, in an open-circuit model, with LMV or MBV at concentrations in the range of clinical peak plasma concentrations. Concentrations were measured using ultraperformance liquid chromatography coupled with tandem mass spectrometry. Mean fetal transfer rate (FTR) (fetal (FC) /maternal concentration), clearance index (CLI), accumulation index (AI) (retention of each drug in the cotyledon tissue) were measured. Mean FC were compared with half maximal effective concentrations of the drugs (EC50(LMV) and EC50(MBV)).ResultsFor LMV, the mean FC was (± standard deviation) 1.1 ± 0.2 mg/L, 1,000-fold above the EC50(LMV). Mean FTR, CLI and AI were 9 ± 1%, 35 ± 6% and 4 ± 2% respectively. For MBV, the mean FC was 1.4 ± 0.2 mg/L, 28-fold above the EC50(MBV). Mean FTR, CLI and AI were 10 ± 1%, 50 ± 7% and 2 ± 1% respectively.ConclusionsDrugs’ concentrations in the fetal side should be in the range for in utero treatment of fetuses infected with CMV as the mean FC was superior to the EC50 for both molecules. ]]> <![CDATA[Texture analysis of magnetic resonance images of the human placenta throughout gestation: A feasibility study]]>

As fetal gestational age increases, other modalities such as ultrasound have demonstrated increased levels of heterogeneity in the normal placenta. In this study, we introduce and apply ROI-based texture analysis to a retrospective fetal MRI database to characterize the second-order statistics of placenta and to evaluate the relationship between heterogeneity and gestational age. Positive correlations were observed for several Haralick texture metrics derived from fetal-brain specific T2-weighted and gravid uterus T1-weighted and T2-weighted images, confirming a quantitative increase in placental heterogeneity with gestational age. Our study shows the importance of identifying baseline MR textural changes at certain gestational ages from which placental diseased states may be compared. Specifically, when evaluating for placental invasion or insufficiency, findings should be evaluated in the context of the normal placental aging process, which occurs throughout gestation.