ResearchPad - plant-development https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Production location of the gelling agent Phytagel has a significant impact on <i>Arabidopsis thaliana</i> seedling phenotypic analysis]]> https://www.researchpad.co/article/elastic_article_14611 Recently, it was found that 1% Phytagel plates used to conduct Arabidopsis thaliana seedling phenotypic analysis no longer reproduced previously published results. This Phytagel, which is produced in China (Phytagel C), has replace American-made Phytagel (Phytagel), which is no longer commercially available. In this study, we present the impact of Phytagel produced in the United States vs. China on seedling phenotypic analysis. As a part of this study, an alternative gelling agent has been identified that is capable of reproducing previously published seedling morphometrics.ResultsPhytagel and Phytagel C were investigated based on their ability to reproduce the subtle phenotype of the sob3-4 esc-8 double mutant. Fluence-rate-response analysis of seedlings grown on 1% Phytagel C plates failed to replicate the sob3-4 esc-8 subtle phenotype seen on 1% Phytagel. Furthermore, root penetrance analysis showed a significant difference between sob3-4 esc-8 seedlings grown on 1% Phytagel and 1% Phytagel C. It was also found that 1% Phytagel C was significantly harder than 1% Phytagel. As a replacement for Phytagel C, Gellan was tested. 1% Gellan was able to reproduce the subtle phenotype of sob3-4 esc-8. Furthermore, there was no significant difference in root penetration of the wild type or sob3-4 esc-8 seedlings between 1% Phytagel and 1% Gellan. This may be due to the significant reduction in hardness in 1% Gellan plates compared to 1% Phytagel plates. Finally, we tested additional concentrations of Gellan and found that seedlings on 0.6% Gellan looked more uniform while also being able to reproduce previously published results.ConclusionsPhytagel has been the standard gelling agent for several studies involving the characterization of subtle seedling phenotypes. After production was moved to China, Phytagel C was no longer capable of reproducing these previously published results. An alternative gelling agent, Gellan, was able to reproduce previously published seedling phenotypes at both 1% and 0.6% concentrations. The information provided in this manuscript is beneficial to the scientific community as whole, specifically phenomics labs, as it details key problematic differences between gelling agents that should be performing identically (Phytagel and Phytagel C). ]]> <![CDATA[Impact of fruit orientation and pelleting material on water uptake and germination performance in artificial substrate for sugar beet]]> https://www.researchpad.co/article/elastic_article_14564 Water uptake into seeds is a fundamental prerequisite of germination and commonly influenced by commercial seed enhancement technologies. The effect of fruit orientation and contrasting pelleting materials on germination and biological performance of sugar beet was assessed. The results indicated there was orientation dependent fruit shrinkage of 37% for the operculum side supplied by moisture compared to 4% for the basal pore side. The expansion rate of 5% compared to the original size, which was also observed for non-shrinking seeds, indicated this was a temporary effect. This behaviour has importance for the application pelleting materials to seeds. Pellets composed of materials exhibiting low levels of swelling act as a water distribution layer which increased germination rates. Careful selection of pelleting material is crucial as it has direct implications on germination speed and subsequent establishment rates.

]]>
<![CDATA[Uptake and speciation of zinc in edible plants grown in smelter contaminated soils]]> https://www.researchpad.co/article/N21b4cc8f-fdc5-4198-8cfa-2868c1971919

Heavy metal accumulation in edible plants grown in contaminated soils poses a major environmental risk to humans and grazing animals. This study focused on the concentration and speciation of Zn in different edible plants grown in soils contaminated with smelter wastes (Spelter, WV, USA) containing high levels of the metals Zn, Cu, Pb, Cd. Their accumulation was examined in different parts (roots, stem, and leaves) of plants and as a function of growth stage (dry seed, sprouting seed, cotyledon, and leaves) in the root vegetables radish, the leafy vegetable spinach and the legume clover. Although the accumulation of metals varied significantly with plant species, the average metal concentrations were [Zn] > [Pb] > [Cu] > [Cd]. Metal uptake studies were complemented with bulk and micro X-ray absorption spectroscopy (XAS) at Zn K-edge and micro X-ray fluorescence (μXRF) measurements to evaluate the speciation and distribution of Zn in these plant species. Dynamic interplay between the histidine and malate complexation of Zn was observed in all plant species. XRF mapping of spinach leaves at micron spatial resolution demonstrated the accumulation of Zn in vacuoles and leaf tips. Radish root showed accumulation of Zn in root hairs, likely as ZnS nanoparticles. At locations of high Zn concentration in spinach leaves, μXANES suggests Zn complexation with histidine, as opposed to malate in the bulk leaf. These findings shed new light on the dynamic nature of Zn speciation in plants.

]]>
<![CDATA[RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity]]> https://www.researchpad.co/article/5c23f311d5eed0c48404a31b

MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. RADIALIS-LIKE SANT/MYB 1 (RSM1) belongs to a MYB-related subfamily, and previous transcriptome analysis suggests that RSM1 may play roles in plant development, stress responses and plant hormone signaling. However, the molecular mechanisms of RSM1 action in response to abiotic stresses remain obscure. We show that down-regulation or up-regulation of RSM1 expression alters the sensitivity of seed germination and cotyledon greening to abscisic acid (ABA), NaCl and mannitol in Arabidopsis. The expression of RSM1 is dynamically regulated by ABA and NaCl. Transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) regulate RSM1 expression via binding to the RSM1 promoter. Genetic analyses reveal that RSM1 mediates multiple functions of HY5 in responses of seed germination, post-germination development to ABA and abiotic stresses, and seedling tolerance to salinity. Pull-down and BiFC assays show that RSM1 interacts with HY5/HYH in vitro and in vivo. RSM1 and HY5/HYH may function as a regulatory module in responses to ABA and abiotic stresses. RSM1 binds to the promoter of ABA INSENSITIVE 5 (ABI5), thereby regulating its expression, while RSM1 interaction also stimulates HY5 binding to the ABI5 promoter. However, no evidence was found in the dual-luciferase transient expression assay to support that RSM enhances the activation of ABI5 expression by HY. In summary, HY5/HYH and RSM1 may converge on the ABI5 promoter and independently or somehow dependently regulate ABI5 expression and ABI5-downstream ABA and abiotic stress-responsive genes, thereby improving the adaption of plants to the environment.

]]>
<![CDATA[MYB1 transcription factor is a candidate responsible for red root skin in radish (Raphanus sativus L.)]]> https://www.researchpad.co/article/5bae98f440307c0c23a1c152

Root skin color is one of the economically important traits in radish (Raphanus sativus), and the pigmentation in red skin varieties is largely attributable to anthocyanin accumulation. Pelargonidin was found as a major anthocyanin pigment accumulated in the sub-epidermal layer of red radish roots. In the 20 F2 population generated from the F1 with red root skins, root skins with red and white colors segregated in a 3:1 ratio. Additionally, a test cross between a red F3 individual and a white skin individual gave rise to 1:1 segregation of red and white, indicating that the root skin color of radish is determined by a single locus and red color is dominant over white. We performed association mapping for root skin color using SNPs obtained from RNA-seq analysis. Segregation analysis on the 152 F3 test-cross population revealed an RsMyb1 transcription factor as a candidate gene to determine root skin color. A PCR marker based on the polymorphism within 2 kb of RsMyb1 was developed and tested on 12 and 152 individuals from F2 and F3 test cross populations, respectively, and red and white root skin colors were completely distinguished corresponding to the genotypes. Expression levels of RsMyb1 in red or purple root cultivars were significantly higher than in white root cultivars. These findings suggest that RsMyb1 is a crucial determinant for anthocyanin biosynthesis in radish roots, and the molecular marker developed in this study will be useful for marker-assisted selection for red skin individuals at early seedling stages.

]]>
<![CDATA[Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.)]]> https://www.researchpad.co/article/5bae98e140307c0c23a1c14a

Nitrogen (N) supply, including NO3--N and organic N in the form of amino acids can influence the morphological attributes of plants. For example, amino acids contribute to plant nutrition; however, the effects of exogenous amino acids on NO3--N uptake and root morphology have received little attention. In this study, we evaluated the effects of exogenous glycine (Gly) on root growth and NO3--N uptake in pak choi (Brassica campestris ssp. Chinensis L.). Addition of Gly to NO3--N agar medium or hydroponic solution significantly decreased pak choi seedling root length; these effects of Gly on root morphology were not attributed to the proportion of N supply derived from Gly. When pak choi seedlings were exposed to mixtures of Gly and NO3--N in hydroponic culture, Gly significantly reduced 15NO3--N uptake but significantly increased the number of root tips per unit root length, root activity and 15NO3--N uptake rate per unit root length. In addition, 15N-Gly was taken up into the plants. In contrast to absorbed NO3--N, which was mostly transported to the shoots, a larger proportion of absorbed Gly was retained in the roots. Exogenous Gly enhanced root 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO) activities and ethylene production. The ethylene antagonists aminoethoxyvinylglycine (0.5 μM AVG) and silver nitrate (10 μM AgNO3) partly reversed Gly-induced inhibition of primary root elongation on agar plates and increased the NO3--N uptake rate under hydroponic conditions, indicating exogenous Gly exerts these effects at least partly by enhancing ethylene production in roots. These findings suggest Gly substantially affects root morphology and N uptake and provide new information on the specific responses elicited by organic N sources.

]]>
<![CDATA[Comparative transcriptomics reveals shared gene expression changes during independent evolutionary origins of stem and hypocotyl/root tubers in Brassica (Brassicaceae)]]> https://www.researchpad.co/article/5c032dfed5eed0c4844f8aab

Plant succulence provides a classic example of evolutionary convergence in over 40 plant families. If evolutionary parallelism is in fact responsible for separate evolutionary origins of expanded storage tissues in stems, hypocotyls, and roots, we expect similar gene expression profiles in stem and hypocotyl / root tubers. We analyzed RNA-Seq transcript abundance patterns in stem and hypocotyl / root tubers of the Brassica crops kohlrabi (B. oleracea) and turnip (B. rapa) and compared their transcript expression profiles to those in the conspecific thin-stemmed and thin-rooted crops flowering kale and pak choi, respectively. Across these four cultivars, 38,192 expressed gene loci were identified. Of the 3,709 differentially-expressed genes (DEGs) in the turnip: pak choi comparison and the 6,521 DEGs in the kohlrabi: kale comparison, turnips and kohlrabies share a statistically disproportionate overlap of 841 DEG homologs in their tubers (p value < 1e-10). This overlapping set is statistically enriched in biochemical functions that are also associated with tuber induction in potatoes and sweet potatoes: sucrose metabolism, lipoxygenases, auxin metabolism, and meristem development. These shared expression profiles in tuberous stems and root / hypocotyls in Brassica suggest parallel employment of shared molecular genetic pathways during the evolution of tubers in stems, hypocotyls and roots of Brassica crops and more widely in other tuberous plants as well.

]]>
<![CDATA[Variation in Virus Symptom Development and Root Architecture Attributes at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Plants Grown with or without Nitrogen]]> https://www.researchpad.co/article/5989d9fdab0ee8fa60b72d72

It has been shown that virus infections, often symptomless, significantly limit sweetpotato productivity, especially in regions characterized by low input agricultural systems. In sweetpotatoes, the successful emergence and development of lateral roots (LRs), the main determinant of root architecture, determines the competency of adventitious roots to undergo storage root initiation. This study aimed to investigate the effect of some plant viruses on root architecture attributes during the onset of storage root initiation in ‘Beauregard’ sweetpotatoes that were grown with or without the presence of nitrogen. In two replicate experiments, virus-tested plants consistently failed to show visible symptoms at 20 days regardless of nitrogen treatment. In both experiments, the severity of symptom development among infected plants ranged from 25 to 118% when compared to the controls (virus tested plants grown in the presence of nitrogen). The presence of a complex of viruses (Sweet potato feathery mottle virus, Sweet potato virus G, Sweet potato virus C, and Sweet potato virus 2) was associated with 51% reduction in adventitious root number among plants grown without nitrogen. The effect of virus treatments on first order LR development depended on the presence or absence of nitrogen. In the presence of nitrogen, only plants infected with Sweet potato chlorotic stunt virus showed reductions in first order LR length, number, and density, which were decreased by 33%, 12%, and 11%, respectively, when compared to the controls. In the absence of nitrogen, virus tested and infected plants manifested significant reductions for all first order LR attributes. These results provide evidence that virus infection directly influences sweetpotato yield potential by reducing both the number of adventitious roots and LR development. These findings provide a framework for understanding how virus infection reduces sweetpotato yield and could lead to the development of novel strategies to mitigate virus effects on sweetpotato productivity.

]]>
<![CDATA[SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat]]> https://www.researchpad.co/article/5989daefab0ee8fa60bc07bc

The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.

]]>
<![CDATA[Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae]]> https://www.researchpad.co/article/5989d9e1ab0ee8fa60b698f3

The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

]]>
<![CDATA[Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana]]> https://www.researchpad.co/article/5989daf7ab0ee8fa60bc331f

Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin.

]]>
<![CDATA[Molecular actions of two synthetic brassinosteroids, iso-carbaBL and 6-deoxoBL, which cause altered physiological activities between Arabidopsis and rice]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc2b6

Brassinosteroid (BR) is an important plant hormone that is perceived by the BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor. BRI1 is conserved among dicot and monocot species; however, the molecular mechanism underlying BR perception in monocots is not fully understood. We synthesised two BRs, iso-carbabrassinolide (iso-carbaBL) and 6-deoxoBL, which have different BR activities in Arabidopsis thaliana (Arabidopsis) and rice. Our bioassay indicated that iso-carbaBL has relatively strong BR activity in Arabidopsis, but is inactive in rice and competitively inhibits BR activity. The bioactivity of 6-deoxoBL was similar to that of BL in Arabidopsis, but was much lower in rice. Binding experiments using recombinant Arabidopsis and rice BRI1 protein fragments suggested that iso-carbaBL and 6-deoxoBL bind to both receptors. These results showed that iso-carbaBL and 6-deoxoBL act as an antagonist and agonist, respectively, of BRs in rice. A docking simulation analysis suggested that iso-carbaBL fits deeper in the binding pocket to block the binding of active BR to rice BRI1. The simulated binding energy of 6-deoxoBL with rice BRI1 is much lower than that with Arabidopsis BRI1. The possible structural characteristics of rice BRI1 were determined based on the difference in the BR activities of iso-carbaBL and 6-deoxoBL in Arabidopsis and rice.

]]>
<![CDATA[Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdc9d8

To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.

]]>
<![CDATA[An Intracellular Transcriptomic Atlas of the Giant Coenocyte Caulerpa taxifolia]]> https://www.researchpad.co/article/5989da3cab0ee8fa60b882db

Convergent morphologies have arisen in plants multiple times. In non-vascular and vascular land plants, convergent morphology in the form of roots, stems, and leaves arose. The morphology of some green algae includes an anchoring holdfast, stipe, and leaf-like fronds. Such morphology occurs in the absence of multicellularity in the siphonous algae, which are single cells. Morphogenesis is separate from cellular division in the land plants, which although are multicellular, have been argued to exhibit properties similar to single celled organisms. Within the single, macroscopic cell of a siphonous alga, how are transcripts partitioned, and what can this tell us about the development of similar convergent structures in land plants? Here, we present a de novo assembled, intracellular transcriptomic atlas for the giant coenocyte Caulerpa taxifolia. Transcripts show a global, basal-apical pattern of distribution from the holdfast to the frond apex in which transcript identities roughly follow the flow of genetic information in the cell, transcription-to-translation. The analysis of the intersection of transcriptomic atlases of a land plant and Caulerpa suggests the recurrent recruitment of transcript accumulation patterns to organs over large evolutionary distances. Our results not only provide an intracellular atlas of transcript localization, but also demonstrate the contribution of transcript partitioning to morphology, independent from multicellularity, in plants.

]]>
<![CDATA[Sorghum Phytochrome B Inhibits Flowering in Long Days by Activating Expression of SbPRR37 and SbGHD7, Repressors of SbEHD1, SbCN8 and SbCN12]]> https://www.researchpad.co/article/5989da17ab0ee8fa60b7bb3c

Light signaling by phytochrome B in long days inhibits flowering in sorghum by increasing expression of the long day floral repressors PSEUDORESPONSE REGULATOR PROTEIN (SbPRR37, Ma1) and GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGHD7, Ma6). SbPRR37 and SbGHD7 RNA abundance peaks in the morning and in the evening of long days through coordinate regulation by light and output from the circadian clock. 58 M, a phytochrome B deficient (phyB-1, ma3R) genotype, flowered ∼60 days earlier than 100 M (PHYB, Ma3) in long days and ∼11 days earlier in short days. Populations derived from 58 M (Ma1, ma3R, Ma5, ma6) and R.07007 (Ma1, Ma3, ma5, Ma6) varied in flowering time due to QTL aligned to PHYB/phyB-1 (Ma3), Ma5, and GHD7/ghd7-1 (Ma6). PHYC was proposed as a candidate gene for Ma5 based on alignment and allelic variation. PHYB and Ma5 (PHYC) were epistatic to Ma1 and Ma6 and progeny recessive for either gene flowered early in long days. Light signaling mediated by PhyB was required for high expression of the floral repressors SbPRR37 and SbGHD7 during the evening of long days. In 100 M (PHYB) the floral activators SbEHD1, SbCN8 and SbCN12 were repressed in long days and de-repressed in short days. In 58 M (phyB-1) these genes were highly expressed in long and short days. Furthermore, SbCN15, the ortholog of rice Hd3a (FT), is expressed at low levels in 100 M but at high levels in 58 M (phyB-1) regardless of day length, indicating that PhyB regulation of SbCN15 expression may modify flowering time in a photoperiod-insensitive manner.

]]>
<![CDATA[Physiological effects of autotoxicity due to DHAP stress on Picea schrenkiana regeneration]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf61c

Picea Schrenkiana as one of the most important zonal vegetation was an endemic species in Middle Asia. Natural regeneration of P. Schrenkiana is a long existing problem troubling scientists. The autotoxicity of 3,4-dihydroxy-acetophenone (DHAP) was found to be a causative factor causing the failure of P. Schrenkiana natural regeneration. The effects of concentrations of DHAP treatment on the viability of root cell, activities of antioxidant enzymes and levels of P. Schrenkiana phytohormones were performed to disclose the physiological mechanism of DHAP autotoxicity. It was observed that high concentration of DHAP could inhibit the seed germination and seedling growth, but had a hormesis at low concentrations. Analyses showed that the root cells significantly lost their viability treated with high DHAP. The enzymes activities of seedlings were significantly stimulated by the treatment of 0.5 mM DHAP to give a transient increase and then decrease as DHAP concentration increased to 1.0 mM except for GR (glutathione reductase) in which DHAP treatment had little effect on its activity. Comparing with the control, an increase in the levels of phytohormones ZT (zeatin), GA3 (gibberellic acid) and IAA (indole acetic acid) was induced by the treatment of DHAP at low concentrations (0.1–0.25 mM), but the significant deficiency was found treated by high concentrations (0.5–1.0 mM). In addition, the ABA (abscisic acid) level increased in all experimental observations. These results suggested that DHAP significantly affected indices of growth and physiology, and provided some new information about different effect in P. Schrenkiana treated with DHAP.

]]>
<![CDATA[Deciphering Transcriptional Programming during Pod and Seed Development Using RNA-Seq in Pigeonpea (Cajanus cajan)]]> https://www.researchpad.co/article/5989daffab0ee8fa60bc62b3

Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety “Asha” (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits.

]]>
<![CDATA[Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdca26

In Arabidopsis, treating shoots with uniconazole can result in enhanced primary root elongation and bolting delay. Uniconazole spraying has become an important cultivation technique in controlling the flowering and improving the fruit-setting of litchi. However, the mechanism by which uniconazole regulates the complicated developmental processes in litchi remains unclear. This study aimed to determine which signal pathways and genes drive the responses of litchi inflorescences to uniconazole treatment. We monitored the transcriptional activity in inflorescences after uniconazole treatment by Illumina sequencing technology. The global expression profiles of uniconazole-treated litchi inflorescences were compared with those of the control, and 4051 differentially expressed genes were isolated. KEGG pathway enrichment analysis indicated that the plant hormone signal transduction pathway served key functions in the flower developmental stage under uniconazole treatment. Basing on the transcriptional analysis of genes involved in flower development, we hypothesized that uniconazole treatment increases the ratio of female flowers by activating the transcription of pistil-related genes. This phenomenon increases opportunities for pollination and fertilization, thereby enhancing the fruit-bearing rate. In addition, uniconazole treatment regulates the expression of unigenes involved in numerous transcription factor families, especially the bHLH and WRKY families. These findings suggest that the uniconazole-induced morphological changes in litchi inflorescences are related to the control of hormone signaling, the regulation of flowering genes, and the expression levels of various transcription factors. This study provides comprehensive inflorescence transcriptome data to elucidate the molecular mechanisms underlying the response of litchi flowers to uniconazole treatment and enumerates possible candidate genes that can be used to guide future research in controlling litchi flowering.

]]>
<![CDATA[Chloroform-Assisted Phenol Extraction Improving Proteome Profiling of Maize Embryos through Selective Depletion of High-Abundance Storage Proteins]]> https://www.researchpad.co/article/5989da69ab0ee8fa60b928cb

The presence of abundant storage proteins in plant embryos greatly impedes seed proteomics analysis. Vicilin (or globulin-1) is the most abundant storage protein in maize embryo. There is a need to deplete the vicilins from maize embryo extracts for enhanced proteomics analysis. We here reported a chloroform-assisted phenol extraction (CAPE) method for vicilin depletion. By CAPE, maize embryo proteins were first extracted in an aqueous buffer, denatured by chloroform and then subjected to phenol extraction. We found that CAPE can effectively deplete the vicilins from maize embryo extract, allowing the detection of low-abundance proteins that were masked by vicilins in 2-DE gel. The novelty of CAPE is that it selectively depletes abundant storage proteins from embryo extracts of both monocot (maize) and dicot (soybean and pea) seeds, whereas other embryo proteins were not depleted. CAPE can significantly improve proteome profiling of embryos and extends the application of chloroform and phenol extraction in plant proteomics. In addition, the rationale behind CAPE depletion of abundant storage proteins was explored.

]]>
<![CDATA[The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress]]> https://www.researchpad.co/article/5989dab2ab0ee8fa60bab9de

The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY), Os05g48630 (PsaH), Os07g37030 (PetC), Os03g57120 (PetH), Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis.

]]>