ResearchPad - plant-hormones https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Response of cytokinins and nitrogen metabolism in the fronds of <i>Pteris</i> sp. under arsenic stress]]> https://www.researchpad.co/article/elastic_article_14748 Given the close relationship between cytokinins (CKs), photosynthesis and nitrogen metabolism, this study assessed the effect of arsenic (As) contamination on these metabolic components in the As-hyperaccumulators Pteris cretica L. var. Albo-lineata (Pc-A) and var. Parkerii (Pc-P) as well as the As-non-hyperaccumulator Pteris straminea Mett. ex Baker (Ps). The ferns were cultivated in a pot experiment for 23 weeks in soil spiked with As at the levels 20 and 100 mg·kg-1. For the purpose of this study, the CKs were placed into five functionally different groups according to their structure and physiological roles: bioactive forms (bCKs; CK free bases); inactive or weakly active forms (dCKs; CK N-glucosides); transport forms (tCKs; CK ribosides); storage forms (sCKs; O-glucosides); and primary products of CK biosynthesis (ppbCKs; CK nucleotides). An important finding was higher CKs total content, accumulation of sCKs and reduction of dCKs in As-hyperaccumulators in contrast to non-hyperaccumulator ferns. A significant depletion of C resources was confirmed in ferns, especially Ps, which was determined by measuring the photosynthetic rate and chlorophyll fluorescence. A fluorescence decrease signified a reduction in the C/N ratio, inducing an increase of bioactive CKs forms in Pc-P and Ps. The impact of As on N utilization was significant in As-hyperaccumulators. The glutamic acid/glutamine ratio, an indicator of primary N assimilation, diminished in all ferns with increased As level in the soil. In conclusion, the results indicate a large phenotypic diversity of Pteris species to As and suggest that the CKs composition and the glutamic acid/glutamine ratio can be used as a tool to diagnose As stress in plants.

]]>
<![CDATA[Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of <i>Bacillus cereus</i> and comparison with exogenous humic acid application]]> https://www.researchpad.co/article/elastic_article_11229 Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.

]]>
<![CDATA[Mutations on ent-kaurene oxidase 1 encoding gene attenuate its enzyme activity of catalyzing the reaction from ent-kaurene to ent-kaurenoic acid and lead to delayed germination in rice]]> https://www.researchpad.co/article/N3fbe67d9-408b-4f07-a6d8-c659dfb628bd

Rice seed germination is a critical step that determines its entire life circle, with seeds failing to germinate or pre-harvest sprouting both reduce grain yield. Nevertheless, the mechanisms underlying this complex biological event remain unclear. Previously, gibberellin has been shown to promote seed germination. In this study, a delayed seed germination rice mutant was obtained through screening of the EMS induced mutants. Besides of delayed germination, it also shows semi-dwarfism phenotype, which could be recovered by exogenous GA. Through re-sequencing on the mutant, wild-type and their F2 populations, we identified two continuous mutated sites on ent-kaurene oxidase 1 (OsKO1) gene, which result in the conversion from Thr to Met in the cytochrome P450 domain. Genetic complementary analysis and enzyme assay verified that the mutations in OsKO1 gene block the biosynthesis of GA and result in the defect phenotypes. Further analyses proved that OsKO1 could catalyze the reaction from ent-kaurene into ent-kaurenoic acid in GA biosynthesis mainly at seed germination and seedling stages, and the mutations decrease its activity to catalyze the step from ent-kaurenol to ent-kaurenoic acid in this reaction. Transcriptomic and proteomic data indicate that the defect on GA biosynthesis decreases its ability to mobilize starch and attenuate ABA signaling, therefore delay the germination process. The results provide some new insights into both GA biosynthesis and seed germination regulatory pathway in rice.

]]>
<![CDATA[Solanum lycopersicum GOLDEN 2-LIKE 2 transcription factor affects fruit quality in a light- and auxin-dependent manner]]> https://www.researchpad.co/article/5c6c75a8d5eed0c4843cff97

Plastids are organelles responsible for essential aspects of plant development, including carbon fixation and synthesis of several secondary metabolites. Chloroplast differentiation and activity are highly regulated by light, and several proteins involved in these processes have been characterised. Such is the case of the GOLDEN 2-LIKE (GLK) transcription factors, which induces the expression of genes related to chloroplast differentiation and photosynthesis. The tomato (Solanum lycopersicum) genome harbours two copies of this gene, SlGLK1 and SlGLK2, each with distinct expression patterns. While the former predominates in leaves, the latter is mainly expressed in fruits, precisely at the pedicel region. During tomato domestication, the selection of fruits with uniform ripening fixed the mutation Slglk2, nowadays present in most cultivated varieties, what penalised fruit metabolic composition. In this study, we investigated how SlGLK2 is regulated by light, auxin and cytokinin and determined the effect of SlGLK2 on tocopherol (vitamin E) and sugar metabolism, which are components of the fruit nutritional and industrial quality. To achieve this, transcriptional profiling and biochemical analysis were performed throughout fruit development and ripening from SlGLK2, Slglk2, SlGLK2-overexpressing genotypes, as well as from phytochrome and hormonal deficient mutants. The results revealed that SlGLK2 expression is regulated by phytochrome-mediated light perception, yet this gene can induce chloroplast differentiation even in a phytochrome-independent manner. Moreover, auxin was found to be a negative regulator of SlGLK2 expression, while SlGLK2 enhances cytokinin responsiveness. Additionally, SlGLK2 enhanced chlorophyll content in immature green fruits, leading to an increment in tocopherol level in ripe fruits. Finally, SlGLK2 overexpression resulted in higher total soluble solid content, possibly by the regulation of sugar metabolism enzyme-encoding genes. The results obtained here shed light on the regulatory network that interconnects SlGLK2, phytohormones and light signal, promoting the plastidial activity and consequently, influencing the quality of tomato fruit.

]]>
<![CDATA[ARR22 overexpression can suppress plant Two-Component Regulatory Systems]]> https://www.researchpad.co/article/5c6b2616d5eed0c4842892c3

In plants, several developmental processes are co-coordinated by cytokinins via phosphorylation dependent processes of the Two-Component System (TCS). An outstanding challenge is to track phosphorelay flow from cytokinin perception to its molecular outputs, of which gene activation plays a major role. To address this issue, a kinetic-based reporter system was expounded to track TCS phosphorelay activity in vivo that can distinguish between basal and cytokinin dependent effects of overexpressed TCS members. The TCS phosphorelay can be positively activated by cytokinin and inhibited by pharmaceuticals or naturally interfering components. In this case we took advantage of the phosphohistidine-phosphatase Arabidopsis Response Regulator (ARR) 22 and investigated its phosphocompetition with other TCS members in regulating promoters of ARR5 and WUS in Arabidopsis thaliana cell culture protoplasts. In congruency with the proposed function of ARR22, overexpression of ARR22 blocked the activation of all B-type ARRs in this study in a TCS dependent manner. Furthermore, this effect could not be mimicked by A-type response regulator overexpression or compensated by AHP overexpression. Compared to other reporter assays, ours mimicked effects previously observed only in transgenic plants for all of the TCS proteins studied, suggesting that it is possible to expose phosphocompetition. Thus, our approach can be used to investigate gene signaling networks involving the TCS by leveraging ARR22 as a TCS inhibitor along with B-type ARR overexpression.

]]>
<![CDATA[Dissecting the pathways coordinating patterning and growth by plant boundary domains]]> https://www.researchpad.co/article/5c536af0d5eed0c484a47c21

Boundary domains play important roles during morphogenesis in plants and animals, but how they contribute to patterning and growth coordination in plants is not understood. The CUC genes determine the boundary domains in the aerial part of the plants and, in particular, they have a conserved role in regulating leaf complexity across Angiosperms. Here, we used tooth formation at the Arabidopsis leaf margin controlled by the CUC2 transcription factor to untangle intertwined events during boundary-controlled morphogenesis in plants. Combining conditional restoration of CUC2 function with morphometrics as well as quantification of gene expression and hormone signaling, we first established that tooth morphogenesis involves a patterning phase and a growth phase. These phases can be separated, as patterning requires CUC2 while growth can occur independently of CUC2. Next, we show that CUC2 acts as a trigger to promote growth through the activation of three functional relays. In particular, we show that KLUH acts downstream of CUC2 to modulate auxin response and that expressing KLUH can compensate for deficient CUC2 expression during tooth growth. Together, we reveal a genetic and molecular network that allows coordination of patterning and growth by CUC2-defined boundaries during morphogenesis at the leaf margin.

]]>
<![CDATA[SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling]]> https://www.researchpad.co/article/5c09945ed5eed0c4842aeb50

Leaf angle is an important agronomic trait and influences crop architecture and yield. Studies have demonstrated the roles of phytohormones, particularly auxin and brassinosteroids, and various factors in controlling leaf inclination. However, the underlying mechanism especially the upstream regulatory networks still need being clarified. Here we report the functional characterization of rice leaf inclination3 (LC3), a SPOC domain-containing transcription suppressor, in regulating leaf inclination through interacting with LIP1 (LC3-interacting protein 1), a HIT zinc finger domain-containing protein. LC3 deficiency results in increased leaf inclination and enhanced expressions of OsIAA12 and OsGH3.2. Being consistent, transgenic plants with OsIAA12 overexpression or deficiency of OsARF17 which interacts with OsIAA12 do present enlarged leaf inclination. LIP1 directly binds to promoter regions of OsIAA12 and OsGH3.2, and interacts with LC3 to synergistically suppress auxin signaling. Our study demonstrate the distinct effects of IAA12-ARF17 interactions in leaf inclination regulation, and provide informative clues to elucidate the functional mechanism of SPOC domain-containing transcription suppressor and fine-controlled network of lamina joint development by LC3-regulated auxin homeostasis and auxin signaling through.

]]>
<![CDATA[Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.)]]> https://www.researchpad.co/article/5bae98e140307c0c23a1c14a

Nitrogen (N) supply, including NO3--N and organic N in the form of amino acids can influence the morphological attributes of plants. For example, amino acids contribute to plant nutrition; however, the effects of exogenous amino acids on NO3--N uptake and root morphology have received little attention. In this study, we evaluated the effects of exogenous glycine (Gly) on root growth and NO3--N uptake in pak choi (Brassica campestris ssp. Chinensis L.). Addition of Gly to NO3--N agar medium or hydroponic solution significantly decreased pak choi seedling root length; these effects of Gly on root morphology were not attributed to the proportion of N supply derived from Gly. When pak choi seedlings were exposed to mixtures of Gly and NO3--N in hydroponic culture, Gly significantly reduced 15NO3--N uptake but significantly increased the number of root tips per unit root length, root activity and 15NO3--N uptake rate per unit root length. In addition, 15N-Gly was taken up into the plants. In contrast to absorbed NO3--N, which was mostly transported to the shoots, a larger proportion of absorbed Gly was retained in the roots. Exogenous Gly enhanced root 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO) activities and ethylene production. The ethylene antagonists aminoethoxyvinylglycine (0.5 μM AVG) and silver nitrate (10 μM AgNO3) partly reversed Gly-induced inhibition of primary root elongation on agar plates and increased the NO3--N uptake rate under hydroponic conditions, indicating exogenous Gly exerts these effects at least partly by enhancing ethylene production in roots. These findings suggest Gly substantially affects root morphology and N uptake and provide new information on the specific responses elicited by organic N sources.

]]>
<![CDATA[Tangled history of a multigene family: The evolution of ISOPENTENYLTRANSFERASE genes]]> https://www.researchpad.co/article/5b6da1ae463d7e4dccc5faea

ISOPENTENYLTRANSFERASE (IPT) genes play important roles in the initial steps of cytokinin synthesis, exist in plant and pathogenic bacteria, and form a multigene family in plants. Protein domain searches revealed that bacteria and plant IPT proteins were to assigned to different protein domains families in the Pfam database, namely Pfam IPT (IPTPfam) and Pfam IPPT (IPPTPfam) families, both are closely related in the P-loop NTPase clan. To understand the origin and evolution of the genes, a species matrix was assembled across the tree of life and intensively in plant lineages. The IPTPfam domain was only found in few bacteria lineages, whereas IPPTPfam is common except in Archaea and Mycoplasma bacteria. The bacterial IPPTPfam domain miaA genes were shown as ancestral of eukaryotic IPPTPfam domain genes. Plant IPTs diversified into class I, class II tRNA-IPTs, and Adenosine-phosphate IPTs; the class I tRNA-IPTs appeared to represent direct successors of miaA genes were found in all plant genomes, whereas class II tRNA-IPTs originated from eukaryotic genes, and were found in prasinophyte algae and in euphyllophytes. Adenosine-phosphate IPTs were only found in angiosperms. Gene duplications resulted in gene redundancies with ubiquitous expression or diversification in expression. In conclusion, it is shown that IPT genes have a complex history prior to the protein family split, and might have experienced losses or HGTs, and gene duplications that are to be likely correlated with the rise in morphological complexity involved in fine tuning cytokinin production.

]]>
<![CDATA[Genome-wide identification and expression profiling of the auxin response factor (ARF) gene family in physic nut]]> https://www.researchpad.co/article/5b6d94ae463d7e2f79286cba

Auxin response factors (ARF) are important transcription factors which mediate the transcription of auxin responsive genes by binding directly to auxin response elements (AuxREs) found in the promoter regions of these genes. To date, no information has been available about the genome-wide organization of the ARF transcription factor family in physic nut. In this study, 17 ARF genes (JcARFs) are identified in the physic nut genome. A detailed investigation into the physic nut ARF gene family is performed, including analysis of the exon-intron structure, conserved domains, conserved motifs, phylogeny, chromosomal locations, potential small RNA targets and expression profiles under various conditions. Phylogenetic analysis suggests that the 17 JcARF proteins are clustered into 6 groups, and most JcARF proteins from the physic nut reveal closer relationships with those from Arabidopsis than those from rice. Of the 17 JcARF genes, eight are predicted to be the potential targets of small RNAs; most of the genes show differential patterns of expression among four tissues (root, stem cortex, leaf, and seed); and qRT-PCR indicates that the expression of all JcARF genes is inhibited or induced in response to exogenous auxin. Expression profile analysis based on RNA-seq data shows that in leaves, 11 of the JcARF genes respond to at least one abiotic stressor (drought and/or salinity) at, as a minimum, at least one time point. Our results provide valuable information for further studies on the roles of JcARF genes in regulating physic nut's growth, development and responses to abiotic stress.

]]>
<![CDATA[Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase, TOPP4]]> https://www.researchpad.co/article/5989dab0ab0ee8fa60bab303

Gibberellins (GAs) are a class of important phytohormones regulating a variety of physiological processes during normal plant growth and development. One of the major events during GA-mediated growth is the degradation of DELLA proteins, key negative regulators of GA signaling pathway. The stability of DELLA proteins is thought to be controlled by protein phosphorylation and dephosphorylation. Up to date, no phosphatase involved in this process has been identified. We have identified a dwarfed dominant-negative Arabidopsis mutant, named topp4-1. Reduced expression of TOPP4 using an artificial microRNA strategy also resulted in a dwarfed phenotype. Genetic and biochemical analyses indicated that TOPP4 regulates GA signal transduction mainly via promoting DELLA protein degradation. The severely dwarfed topp4-1 phenotypes were partially rescued by the DELLA deficient mutants rga-t2 and gai-t6, suggesting that the DELLA proteins RGA and GAI are required for the biological function of TOPP4. Both RGA and GAI were greatly accumulated in topp4-1 but significantly decreased in 35S-TOPP4 transgenic plants compared to wild-type plants. Further analyses demonstrated that TOPP4 is able to directly bind and dephosphorylate RGA and GAI, confirming that the TOPP4-controlled phosphorylation status of DELLAs is associated with their stability. These studies provide direct evidence for a crucial role of protein dephosphorylation mediated by TOPP4 in the GA signaling pathway.

]]>
<![CDATA[Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites]]> https://www.researchpad.co/article/5989da22ab0ee8fa60b7f578

Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl)-cyclopentane-1-butanoic acid (OPC-4) and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

]]>
<![CDATA[Genome-Wide Identification of miRNAs and Their Targets Involved in the Developing Internodes under Maize Ears by Responding to Hormone Signaling]]> https://www.researchpad.co/article/5989db3fab0ee8fa60bd629a

Internode length is one of the decisive factors affecting plant height (PH) and ear height (EH), which are closely associated with the lodging resistance, biomass and grain yield of maize. miRNAs, currently recognized as important transcriptional/ post-transcriptional regulators, play an essential role in plant growth and development. However, their roles in developing internodes under maize ears remain unclear. To identify the roles of miRNAs and their targets in the development of internodes under maize ears, six miRNA and two degradome libraries were constructed using the 7th, 8th and 9th internodes of two inbred lines, ‘Xun928’ and ‘Xun9058’, which had significantly different internode lengths. A total of 45 and 54 miRNAs showed significant changes for each pairwise comparison among the 7th, 8th and 9th internodes of ‘Xun9058’ and ‘Xun928’, respectively. The expression of 31 miRNAs showed significant changes were common to the corresponding comparison groups of the 7th, 8th and 9th internodes of ‘Xun9058’ and ‘Xun928’. For the corresponding internodes of ‘Xun9058’ and ‘Xun928’, compared with the expression of miRNAs in the 7th, 8th and 9th internodes of ‘Xun928’, the numbers of up-regulated and down-regulated miRNAs were 11 and 36 in the 7th internode, 9 and 45 in the 8th internode, and 9 and 25 in the 9th internode of ‘Xun9058’, respectively. Moreover, 10 miRNA families containing 45 members showed significant changes at least in two internodes of ‘Xun928’ by comparing with the corresponding internodes of ‘Xun9058’. Based on the sequencing data, 20 miRNAs related to hormone signaling among the candidates, belonging to five conserved miRNA families, were selected for expression profiling using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The five miRNA families, zma-miR160, zma-miR167, zma-miR164, zma-miR169 and zma-miR393, targeted the genes encoding auxin response factor, N-acetylcysteine domain containing protein, nuclear transcription factor Y and auxin signaling F-BOX 2 through degradome sequencing. The miRNAs might regulate their targets to respond to hormone signaling, thereby regulating the internode elongation and development under maize ear. These results provide valuable reference for understanding the possible regulation mechanism of the ILs under the ear.

]]>
<![CDATA[Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis]]> https://www.researchpad.co/article/5989da20ab0ee8fa60b7e7db

Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3) and EIL1 (EIN3-LIKE 1), two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent) genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS) scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270), which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD) activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

]]>
<![CDATA[Shoot stem cell specification in roots by the WUSCHEL transcription factor]]> https://www.researchpad.co/article/5989db59ab0ee8fa60bdf10b

The WUSCHEL homeobox transcription factor is required to specify stem-cell identity at the shoot apical meristem and its ectopic expression is sufficient to induce de novo shoot meristem formation. Yet, the manner by which WUS promotes stem-cell fate is not yet fully understood. In the present research we address this question by inducing WUS function outside of its domain. We show that activation of WUS function in the root inhibits the responses to exogenous auxin and suppresses the initiation and growth of lateral roots. Using time lapse movies to follow the cell-cycle marker CYCB1;1::GFP, we also show that activation of WUS function suppresses cell division and cell elongation. In addition, activation of WUS represses the auxin-induced expression of the PLETHORA1 root identity gene and promotes shoot fate. Shoot apical meristem formation requires a high cytokinin-to-auxin ratio. Our findings provide evidence for the manner by which WUS specifies stem-cell identity: by affecting auxin responses, by reducing the cell mitotic activity and by repressing other developmental pathways. At the meristem, the stem-cells which are characterized by low division rate are surrounded by the highly proliferative meristematic cells. Our results also provide a model for WUS establishing the differential mitotic rates between two cell populations at the minute structure of the meristem.

]]>
<![CDATA[Physiological effects of autotoxicity due to DHAP stress on Picea schrenkiana regeneration]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf61c

Picea Schrenkiana as one of the most important zonal vegetation was an endemic species in Middle Asia. Natural regeneration of P. Schrenkiana is a long existing problem troubling scientists. The autotoxicity of 3,4-dihydroxy-acetophenone (DHAP) was found to be a causative factor causing the failure of P. Schrenkiana natural regeneration. The effects of concentrations of DHAP treatment on the viability of root cell, activities of antioxidant enzymes and levels of P. Schrenkiana phytohormones were performed to disclose the physiological mechanism of DHAP autotoxicity. It was observed that high concentration of DHAP could inhibit the seed germination and seedling growth, but had a hormesis at low concentrations. Analyses showed that the root cells significantly lost their viability treated with high DHAP. The enzymes activities of seedlings were significantly stimulated by the treatment of 0.5 mM DHAP to give a transient increase and then decrease as DHAP concentration increased to 1.0 mM except for GR (glutathione reductase) in which DHAP treatment had little effect on its activity. Comparing with the control, an increase in the levels of phytohormones ZT (zeatin), GA3 (gibberellic acid) and IAA (indole acetic acid) was induced by the treatment of DHAP at low concentrations (0.1–0.25 mM), but the significant deficiency was found treated by high concentrations (0.5–1.0 mM). In addition, the ABA (abscisic acid) level increased in all experimental observations. These results suggested that DHAP significantly affected indices of growth and physiology, and provided some new information about different effect in P. Schrenkiana treated with DHAP.

]]>
<![CDATA[Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdca26

In Arabidopsis, treating shoots with uniconazole can result in enhanced primary root elongation and bolting delay. Uniconazole spraying has become an important cultivation technique in controlling the flowering and improving the fruit-setting of litchi. However, the mechanism by which uniconazole regulates the complicated developmental processes in litchi remains unclear. This study aimed to determine which signal pathways and genes drive the responses of litchi inflorescences to uniconazole treatment. We monitored the transcriptional activity in inflorescences after uniconazole treatment by Illumina sequencing technology. The global expression profiles of uniconazole-treated litchi inflorescences were compared with those of the control, and 4051 differentially expressed genes were isolated. KEGG pathway enrichment analysis indicated that the plant hormone signal transduction pathway served key functions in the flower developmental stage under uniconazole treatment. Basing on the transcriptional analysis of genes involved in flower development, we hypothesized that uniconazole treatment increases the ratio of female flowers by activating the transcription of pistil-related genes. This phenomenon increases opportunities for pollination and fertilization, thereby enhancing the fruit-bearing rate. In addition, uniconazole treatment regulates the expression of unigenes involved in numerous transcription factor families, especially the bHLH and WRKY families. These findings suggest that the uniconazole-induced morphological changes in litchi inflorescences are related to the control of hormone signaling, the regulation of flowering genes, and the expression levels of various transcription factors. This study provides comprehensive inflorescence transcriptome data to elucidate the molecular mechanisms underlying the response of litchi flowers to uniconazole treatment and enumerates possible candidate genes that can be used to guide future research in controlling litchi flowering.

]]>
<![CDATA[Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc8b1

Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the expression of many genes involved in cytokinin action differs between the panicle and vegetative tissues. Dynamic patterns of gene expression suggest that subnetworks mediate cytokinin action during different stages of panicle development. The variation of expression during panicle development is greater among genes encoding proteins involved in cytokinin metabolism and negative regulators of the pathway than for the genes in the primary response pathway. These results provide insight into the expression patterns of genes involved in cytokinin action during inflorescence development in a crop of agricultural importance, with relevance to similar processes in other monocots. The identification of subnetworks of genes expressed at different stages of early panicle development suggests that manipulation of their expression could have substantial effects on inflorescence architecture.

]]>
<![CDATA[Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus]]> https://www.researchpad.co/article/5989d9f6ab0ee8fa60b70649

Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA), were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd) or Tomato Spotted Wilt Virus (TSWV). The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH), which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants.

]]>
<![CDATA[Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbf30

Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography—mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity.

]]>