ResearchPad - plant-pathology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A MYB transcription factor, <i>BnMYB2</i>, cloned from ramie (<i>Boehmeria nivea</i>) is involved in cadmium tolerance and accumulation]]> https://www.researchpad.co/article/elastic_article_15762 MYB-related transcription factors play important roles in plant development and response to various environmental stresses. In the present study, a novel MYB gene, designated as BnMYB2 (GenBank accession number: MF741319.1), was isolated from Boehmeria nivea using rapid amplification of cDNA ends (RACE) and RT-PCR on a sequence fragment from a ramie transcriptome. BnMYB2 has a 945 bp open reading frame encoding a 314 amino acid protein that contains a DNA-binding domain and shares high sequence identity with MYB proteins from other plant species. The BnMYB2 promoter contains several putative cis-acting elements involved in stress or phytohormone responses. A translational fusion of BnMYB2 with enhanced green fluorescent protein (eGFP) showed nuclear and cytosolic subcellular localization. Real-time PCR results indicated that BnMYB2 expression was induced by Cadmium (Cd) stress. Overexpression of BnMYB2 in Arabidopsis thaliana resulted in a significant increase of Cd tolerance and accumulation. Thus, BnMYB2 positively regulated Cd tolerance and accumulation in Arabidopsis, and could be used to enhance the efficiency of Cd removal with plants.

]]>
<![CDATA[Mycelial biomass estimation and metabolic quotient of <i>Lentinula edodes</i> using species-specific qPCR]]> https://www.researchpad.co/article/elastic_article_15715 Lentinula edodes, commonly known as shiitake, is an edible mushroom that is cultivated and consumed around the globe, especially in Asia. Monitoring mycelial growth inside a woody substrate is difficult, but it is essential for effective management of mushroom cultivation. Mycelial biomass also affects the rate of wood decomposition under natural conditions and must be known to determine the metabolic quotient, an important ecophysiological parameter of fungal growth. Therefore, developing a method to measure it inside a substrate would be very useful. In this study, as the first step in understanding species-specific rates of fungal decomposition of wood, we developed species-specific primers and qPCR procedures for L. edodes. We tested primer specificity using strains of L. edodes from Japan and Southeast Asia, as well as related species of fungi and plant species for cultivation of L. edodes, and generated a calibration curve for quantification of mycelial biomass in wood dust inoculated with L. edodes. The qPCR procedure we developed can specifically detect L. edodes and allowed us to quantify the increase in L. edodes biomass in wood dust substrate and calculate the metabolic quotient based on the mycelial biomass and respiration rate. Development of a species-specific method for biomass quantification will be useful for both estimation of mycelial biomass and determining the kinetics of fungal growth in decomposition processes.

]]>
<![CDATA[<i>Xylella fastidiosa</i> subsp. <i>pauca</i> and olive produced lipids moderate the switch adhesive versus non-adhesive state and <i>viceversa</i>]]> https://www.researchpad.co/article/elastic_article_14717 Global trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. In last decades, X. fastidiosa was detected in several European countries. X. fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of hosts. X. fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on mixture of cis 2-enoic fatty acids—diffusible signalling factors (DSF) that promote stickiness and biofilm. The lipidome profile of Olea europaea L. (cv. Ogliarola salentina) samples, collected in groves located in infected zones and uninfected zones was performed. The untargeted analysis of the lipid profiles of Olive Quick Decline Syndrome (OQDS) positive (+) and negative (-) plants showed a clustering of OQDS+ plants apart from OQDS-. The targeted lipids profile of plants OQDS+ and OQDS- identified a shortlist of 10 lipids that increase their amount in OQDS+ and X. fastidiosa positive olive trees. These lipid entities, provided to X. fastidiosa subsp. pauca pure culture, impact on the dual phase, e.g. planktonic ↔ biofilm. This study provides novel insights on OQDS lipid hallmarks and on molecules that might modulate biofilm phase in X. fastidiosa subsp. pauca.

]]>
<![CDATA[Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of <i>CmMAPKs</i> in melon (<i>Cucumis melo</i> L.)]]> https://www.researchpad.co/article/elastic_article_14577 Mitogen-activated protein kinase (MAPK) is a form of serine/threonine protein kinase that activated by extracellular stimulation acting through the MAPK cascade (MAPKKK-MAPKK-MAPK). The MAPK cascade gene family, an important family of protein kinases, plays a vital role in responding to various stresses and hormone signal transduction processes in plants. In this study, we identified 14 CmMAPKs, 6 CmMAPKKs and 64 CmMAPKKKs in melon genome. Based on structural characteristics and a comparison of phylogenetic relationships of MAPK gene families from Arabidopsis, cucumber and watermelon, CmMAPKs and CmMAPKKs were categorized into 4 groups, and CmMAPKKKs were categorized into 3 groups. Furthermore, chromosome location revealed an unevenly distribution on chromosomes of MAPK cascade genes in melon, respectively. Eventually, qRT-PCR analysis showed that all 14 CmMAPKs had different expression patterns under drought, salt, salicylic acid (SA), methyl jasmonate (MeJA), red light (RL), and Podosphaera xanthii (P. xanthii) treatments. Overall, the expression levels of CmMAPK3 and CmMAPK7 under different treatments were higher than those in control. Our study provides an important basis for future functional verification of MAPK genes in regulating responses to stress and signal substance in melon.

]]>
<![CDATA[Seed germination of <i>Bidens subalternans</i> DC. exposed to different environmental factors]]> https://www.researchpad.co/article/elastic_article_14560 Bidens subalternans DC. is a weed found in several tropical countries such as Brazil. Large number of produced seeds and easy dispersion favor the colonization of agricultural fields by this species. To know the factors that affect the germination of B. subalternans can help to understand its ecology, permitting to develop control strategies. Laboratory experiments were carried out to evaluate how the temperature, photoperiod, burial depth, water deficit, and salt stress affect the seed germination of B. subalternans. The means of the treatments of each experiment were shown in scatter plots with the bars indicating the least significant difference (LSD, p≤0.05). The results showed a germination percentage above 77% for a wide alternating temperature (15/20 C to 30/35 C night/day). The highest germination and uniformity occurred at 25/30°C night/day. Only 11% of the seeds germinated at a temperature of 35/40°C night/day. The deeper burial of seeds reduced their germination. Only 17% of the seeds germinated in darkness conditions. However, in constant light and 12 hours of light/dark conditions the germination percentage was over 96%, confirming the light dependence of the B. subalternans during germination. In constant light and 12 hours of light/dark, the germination was over 96%. B. subalternans seeds showed sensitivity to water and salt stress, and their germination was inhibited under a water potential of -0.4 MPa and 100.09 mM, respectively. The sensitivity of B. subalternans seeds to high temperatures, water stress, and salt stress explains the high frequency of this weed in south-central Brazil. The light and sowing depth showed that burial of seeds by mechanical control is a strategy to reduce the high infestation of B. subalternans.

]]>
<![CDATA[Rediscovering an old foe: Optimised molecular methods for DNA extraction and sequencing applications for fungarium specimens of powdery mildew (Erysiphales)]]> https://www.researchpad.co/article/elastic_article_14476 The purpose of this study was to identify a reliable DNA extraction protocol to use on 25-year-old powdery mildew specimens from the reference collection VPRI in order to produce high quality sequences suitable to address taxonomic phylogenetic questions. We tested 13 extraction protocols and two library preparation kits and found the combination of the E.Z.N.A.® Forensic DNA kit for DNA extraction and the NuGen Ovation® Ultralow System library preparation kit was the most suitable for this purpose.

]]>
<![CDATA[Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat]]> https://www.researchpad.co/article/elastic_article_14475 Heat stress along with low water availability at reproductive stage (terminal growth phase of wheat crop) is major contributing factor towards less wheat production in tropics and sub-tropics. Flag leaf plays a pivotal role in assimilate partitioning and stress tolerance of wheat during terminal growth phase. However, limited is known about biochemical response of flag leaf to combined and individual heat and drought stress during terminal growth phase. Therefore, current study investigated combined and individual effect of terminal drought and heat stress on water relations, photosynthetic pigments, osmolytes accumulation and antioxidants defense mechanism in flag leaf of bread wheat. Experimental treatments comprised of control, terminal drought stress alone (50% field capacity during reproductive phase), terminal heat stress alone (wheat grown inside plastic tunnel during reproductive phase) and terminal drought stress + terminal heat stress. Individual and combined imposition of drought and heat stresses significantly (p≤0.05) altered water relations, osmolyte contents, soluble proteins and sugars along with activated antioxidant defensive system in terms of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Turgor potential, POD and APX activities were lowest under individual heat stress; however, these were improved when drought stress was combined with heat stress. It is concluded that combined effect of drought and heat stress was more detrimental than individual stresses. The interactive effect of both stresses was hypo-additive in nature, but for some traits (like turgor potential and APX) effect of one stress neutralized the other. To best of our knowledge, this is the first report on physiological and biochemical response of flag leaf of wheat to combine heat and drought stress. These results will help future studies dealing with improved stress tolerance in wheat. However, detailed studies are needed to fully understand the genetic mechanisms behind these physiological and biochemical changes in flag leaf in response to combined heat and drought stress.

]]>
<![CDATA[Genome reconstruction of the non-culturable spinach downy mildew <i>Peronospora effusa</i> by metagenome filtering]]> https://www.researchpad.co/article/elastic_article_13800 Peronospora effusa (previously known as P. farinosa f. sp. spinaciae, and here referred to as Pfs) is an obligate biotrophic oomycete that causes downy mildew on spinach (Spinacia oleracea). To combat this destructive many disease resistant cultivars have been bred and used. However, new Pfs races rapidly break the employed resistance genes. To get insight into the gene repertoire of Pfs and identify infection-related genes, the genome of the first reference race, Pfs1, was sequenced, assembled, and annotated. Due to the obligate biotrophic nature of this pathogen, material for DNA isolation can only be collected from infected spinach leaves that, however, also contain many other microorganisms. The obtained sequences can, therefore, be considered a metagenome. To filter and obtain Pfs sequences we utilized the CAT tool to taxonomically annotate ORFs residing on long sequences of a genome pre-assembly. This study is the first to show that CAT filtering performs well on eukaryotic contigs. Based on the taxonomy, determined on multiple ORFs, contaminating long sequences and corresponding reads were removed from the metagenome. Filtered reads were re-assembled to provide a clean and improved Pfs genome sequence of 32.4 Mbp consisting of 8,635 scaffolds. Transcript sequencing of a range of infection time points aided the prediction of a total of 13,277 gene models, including 99 RxLR(-like) effector, and 14 putative Crinkler genes. Comparative analysis identified common features in the predicted secretomes of different obligate biotrophic oomycetes, regardless of their phylogenetic distance. Their secretomes are generally smaller, compared to hemi-biotrophic and necrotrophic oomycete species. We observe a reduction in proteins involved in cell wall degradation, in Nep1-like proteins (NLPs), proteins with PAN/apple domains, and host translocated effectors. The genome of Pfs1 will be instrumental in studying downy mildew virulence and for understanding the molecular adaptations by which new isolates break spinach resistance.

]]>
<![CDATA[Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of <i>Bacillus cereus</i> and comparison with exogenous humic acid application]]> https://www.researchpad.co/article/elastic_article_11229 Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.

]]>
<![CDATA[Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity]]> https://www.researchpad.co/article/N52f944dc-26d8-4e67-9222-1bf646d955e0

Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.

]]>
<![CDATA[Potential role of weather, soil and plant microbial communities in rapid decline of apple trees]]> https://www.researchpad.co/article/5c89776ed5eed0c4847d2c8c

An unusual decline and collapse of young established trees known as “rapid apple decline” (RAD) has become a major concern for apple growers, particularly in the northeastern United States. This decline is characterized by stunted growth, pale yellow to reddish leaves, and tree collapse within weeks after onset of symptoms. We studied declining apple trees to identify potential involvement of abiotic and biotic stresses. We used 16S and ITS to profile bacterial and fungal communities in the soil, rhizosphere, roots, and shoots and tested for the presence of six viruses in scions and rootstocks of symptomatic and asymptomatic trees. The viruses detected were not associated with RAD symptoms. Bacterial and fungal populations were highly variable in plant tissue, soil and rhizosphere samples, with bacteroidetes, firmicutes, proteobacteria, acidobacteria, and actinobacteria the predominant bacterial classes in various samples. ‘Alphaproteobacteria-rickettsiales’, a bacterial class usually reduced in water-limiting soils, had significantly low abundance in root samples of symptomatic trees. Basidiomycota and Ascomycota fungal classes were the most common fungal classes observed, but neither showed differential enrichment between symptomatic and asymptomatic trees. Analyzing weather data showed an extremely cold winter followed by drought in 2015–2016, which likely weakened the trees to make them more susceptible to varied stresses. In addition, similar physical and nutritional soil composition from symptomatic and asymptomatic trees rules out the role of nutritional stress in RAD. Necrotic lesions and wood decay symptoms dispersing from bark or vascular cambium towards the heartwood were observed primarily below the graft union of declining apple trees, suggesting that the rootstock is the originating point of RAD. We speculate that differences in abiotic factors such as moisture levels in declining roots in combination with extreme weather profiles might cause RAD but cannot clearly rule out the involvement of other factors.

]]>
<![CDATA[Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.)]]> https://www.researchpad.co/article/5c897798d5eed0c4847d30f2

The NAC family is one of the largest plant-specific transcription factor families, and some of its members are known to play major roles in plant development and response to biotic and abiotic stresses. Here, we inventoried 488 NAC members in bread wheat (Triticum aestivum). Using the recent release of the wheat genome (IWGS RefSeq v1.0), we studied duplication events focusing on genomic regions from 4B-4D-5A chromosomes as an example of the family expansion and neofunctionalization of TaNAC members. Differentially expressed TaNAC genes in organs and in response to abiotic stresses were identified using publicly available RNAseq data. Expression profiling of 23 selected candidate TaNAC genes was studied in leaf and grain from two bread wheat genotypes at two developmental stages in field drought conditions and revealed insights into their specific and/or overlapping expression patterns. This study showed that, of the 23 TaNAC genes, seven have a leaf-specific expression and five have a grain-specific expression. In addition, the grain-specific genes profiles in response to drought depend on the genotype. These genes may be considered as potential candidates for further functional validation and could present an interest for crop improvement programs in response to climate change. Globally, the present study provides new insights into evolution, divergence and functional analysis of NAC gene family in bread wheat.

]]>
<![CDATA[Analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.) reveals drought avoidance mechanisms under water scarcity]]> https://www.researchpad.co/article/5c89770fd5eed0c4847d238d

In this study, high-throughput sequencing (RNA-Seq) was utilized to evaluate differential expression of transcripts and their related genes involved in response to terminal drought in root tissues of bread wheat landrace (L-82) and drought-sensitive genotype (Marvdasht). Subsets of 460 differentially expressed genes (DEGs) in drought-tolerant genotype and 236 in drought-sensitive genotype were distinguished and functionally annotated with 105 gene ontology (GO) terms and 77 metabolic pathways. Transcriptome profiling of drought-resistant genotype “L-82” showed up-regulation of genes mostly involved in Oxidation-reduction process, secondary metabolite biosynthesis, abiotic stress response, transferase activity and heat shock proteins. On the other hand, down-regulated genes mostly involved in signaling, oxidation-reduction process, secondary metabolite biosynthesis, auxin-responsive protein and lipid metabolism. We hypothesized that the drought tolerance in “L-82” was a result of avoidance strategies. Up-regulation of genes related to the deeper root system and adequate hydraulic characteristics to allow water uptake under water scarcity confirms our hypothesis. The transcriptomic sequences generated in this study provide information about mechanisms of acclimation to drought in the selected bread wheat landrace, “L-82”, and will help us to unravel the mechanisms underlying the ability of crops to reproduce and keep its productivity even under drought stress.

]]>
<![CDATA[Sexual dimorphism of acute doxorubicin-induced nephrotoxicity in C57Bl/6 mice]]> https://www.researchpad.co/article/5c76fe23d5eed0c484e5b5ad

Doxorubicin (DOX) is a chemotherapeutic agent that has been reported to cause nephrotoxicity in rodent models and to a lesser degree in cancer patients. Female rodents have been shown to be protected against several features of DOX-induced nephrotoxicity. Nevertheless, the underlying mechanisms of this sexual dimorphism are not fully elucidated. Therefore, in the current study, we investigated the sex and time-dependent changes in pathological lesions as well as apoptotic and fibrotic markers in response to acute DOX-induced nephrotoxicity. We also determined the effect of acute DOX treatment on the renal expression of the sexually dimorphic enzyme, soluble epoxide hydrolase (sEH), since inhibition of sEH has been shown to protect against DOX-induced nephrotoxicity. Acute DOX-induced nephrotoxicity was induced by a single intra-peritoneal injection of 20 mg/kg DOX to male and female adult C57Bl/6 mice. The kidneys were isolated 1, 3 and 6 days after DOX administration. Histopathology assessment, gene expression of the apoptotic marker, BAX, protein expression of the fibrotic marker, transforming growth factor-β (TGF-β), and gene and protein expression of sEH were assessed. DOX administration caused more severe pathological lesions as well as higher induction of the apoptotic and fibrotic markers in kidneys of male than in female mice. Intriguingly, DOX inhibited sEH protein expression in kidneys of male mice sacrificed at 3 and 6 days following administration, suggesting that induction of sEH is not necessary for acute DOX-induced nephrotoxicity. However, DOX-induced inhibition of renal sEH in male mice may protect the kidney from further DOX-induced injury in a negative feedback mechanism. We also observed lower constitutive expressions of TGF-β and sEH in the kidney of female mice which may contribute, at least in part, to sexual dimorphism of DOX-induced nephrotoxicity.

]]>
<![CDATA[Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks]]> https://www.researchpad.co/article/5c6f14bbd5eed0c48467a754

Rosellinia necatrix is the causal agent of avocado white root rot (WRR). Control of this soil-borne disease is difficult, and the use of tolerant rootstocks may present an effective method to lessen its impact. To date, no studies on the molecular mechanisms regulating the avocado plant response towards this pathogen have been undertaken. To shed light on the mechanisms underpinning disease susceptibility and tolerance, molecular analysis of the gene’s response in two avocado rootstocks with a contrasting disease reaction was assessed. Gene expression profiles against R. necatrix were carried out in the susceptible ‘Dusa’ and the tolerant selection BG83 avocado genotypes by micro-array analysis. In ‘Dusa’, the early response was mainly related to redox processes and cell-wall degradation activities, all becoming enhanced after disease progression affected photosynthetic capacity, whereas tolerance to R. necatrix in BG83 relied on the induction of protease inhibitors and their negative regulators, as well as genes related to tolerance to salt and osmotic stress such as aspartic peptidase domain-containing proteins and gdsl esterase lipase proteins. In addition, three protease inhibitors were identified, glu protease, trypsin and endopeptidase inhibitors, which were highly overexpressed in the tolerant genotype when compared to susceptible ‘Dusa’, after infection with R. necatrix, reaching fold change values of 52, 19 and 38, respectively. The contrasting results between ‘Dusa’ and BG83 provide new insights into the different mechanisms involved in avocado tolerance to Phytophthora cinnamomi and R. necatrix, which are consistent with their biotrophic and necrotrophic lifestyles, respectively. The differential induction of genes involved in salt and osmotic stress in BG83 could indicate that R. necatrix penetration into the roots is associated with osmotic effects, suggesting that BG83’s tolerance to R. necatrix is related to the ability to withstand osmotic imbalance. In addition, the high expression of protease inhibitors in tolerant BG83 compared to susceptible ‘Dusa’ after infection with the pathogen suggests the important role that these proteins may play in the defence of avocado rootstocks against R. necatrix.

]]>
<![CDATA[Evidence of a trans-kingdom plant disease complex between a fungus and plant-parasitic nematodes]]> https://www.researchpad.co/article/5c6dca20d5eed0c48452a801

Disease prediction tools improve management efforts for many plant diseases. Prediction and downstream prevention demand information about disease etiology, which can be complicated for some diseases, like those caused by soilborne microorganisms. Fortunately, the availability of machine learning methods has enabled researchers to elucidate complex relationships between hosts and pathogens without invoking difficult-to-satisfy assumptions. The etiology of a destructive plant disease, Verticillium wilt of mint, caused by the fungus Verticillium dahliae was reevaluated with several supervised machine learning methods. Specifically, the objective of this research was to identify drivers of wilt in commercial mint fields, describe the relationships between these drivers, and predict wilt. Soil samples were collected from commercial mint fields. Wilt foci, V. dahliae, and plant-parasitic nematodes that can exacerbate wilt were quantified. Multiple linear regression, a generalized additive model, random forest, and an artificial neural network were fit to the data, validated with 10-fold cross-validation, and measures of explanatory and predictive performance were compared. All models selected nematodes within the genus Pratylenchus as the most important predictor of wilt. The fungus after which this disease is named, V. dahliae, was the fourth most important predictor of wilt, after crop age and cultivar. All models explained around 50% of the total variation (R2 ≤ 0.46), and exhibited comparable predictive error (RMSE ≤ 1.21). Collectively, these models revealed that the quantitative relationships between two pathogens, mint cultivars and age are required to explain wilt. The ascendance of Pratylenchus spp. in predicting symptoms of a disease assumed to primarily be caused by V. dahliae exposes the underestimated contribution of these nematodes to wilt. This research provides a foundation on which predictive forecasting tools can be developed for mint growers and reminds us of the lessons that can be learned by revisiting assumptions about disease etiology.

]]>
<![CDATA[Viral infection detection using metagenomics technology in six poultry farms of eastern China]]> https://www.researchpad.co/article/5c76fde1d5eed0c484e5afbf

With rapidly increasing animal pathogen surveillance requirements, new technologies are needed for a comprehensive understanding of the roles of pathogens in the occurrence and development of animal diseases. We applied metagenomic technology to avian virus surveillance to study the main viruses infecting six poultry farms in two provinces in eastern China. Cloacal/throat double swabs were collected from 60 birds at each farm according to a random sampling method. The results showed that the method could simultaneously detect major viruses infecting farms, including avian influenza virus, infectious bronchitis virus, Newcastle disease virus, rotavirus G, duck hepatitis B virus, and avian leukemia virus subgroup J in several farms. The test results were consistent with the results from traditional polymerase chain reaction (PCR) or reverse transcription-PCR analyses. Five H9N2 and one H3N8 avian influenza viruses were detected at the farms and were identified as low pathogenic avian influenza viruses according to HA cleavage sites analysis. One detected Newcastle disease virus was classified as Class II genotype I and avirulent type according to F0 cleavage sites analysis. Three avian infectious bronchitis viruses were identified as 4/91, CK/CH/LSC/99I and TC07-2 genotypes by phylogenetic analysis of S1 genes. The viral infection surveillance method using metagenomics technology enables the monitoring of multiple viral infections, which allows the detection of main infectious viruses.

]]>
<![CDATA[Mediterranean and Northern Iberian gene pools of wild Castanea sativa Mill. are two differentiated ecotypes originated under natural divergent selection]]> https://www.researchpad.co/article/5c6c75c1d5eed0c4843d00f3

Nine wild Iberian provenances of Castanea sativa Mill. grouped in two gene pools, North Iberian Peninsula and Mediterranean, were evaluated for several adaptive traits in two provenance–progeny trials with the aim of evaluating the role of natural selection in shaping adaptive variation and increasing our understanding of the genetic structure of this species, as well as reporting complete information on the genetic variation among and within the studied populations. An annual growth rhythm experiment was evaluated during the first 3 years after establishment for phenology, growth, stem form and survival, and a periodic drought-stress experiment was evaluated for dry weight, growth, survival and other related drought traits in both well-watered and drought-stress treatments. The high genetic variability reported in both trials is largely due to the genetic variation among populations. The significant differences reported between quantitative genetic and neutral marker differentiation indicated the local adaptation of these populations through directional selection, mainly for phenology, growth and biomass allocation. A clinal variation among populations was determined through correlations of phenology with latitude and xerothermic index of the provenances, showing that central and southern Mediterranean populations had earlier phenology than northern populations and that drought played a relevant role in this differentiation. The significant correlation between phenological traits and the ancestry values in the Mediterranean gene pool supported the different pattern of behavior between both gene pools and also indicated the existence of two ecotypes: xeric and mesophytic ecotypes, corresponding to Mediterranean and North Iberian gene pools, respectively. The results obtained in the drought-stress experiment confirmed that, in general terms, xeric populations showed a greater adaptability to drought, with more developed root systems and higher survival than northern populations. Moreover, the genetic variability observed within populations indicated the potential response capacity of Iberian C. sativa populations to undergo fast adaptive evolution.

]]>
<![CDATA[Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity]]> https://www.researchpad.co/article/5c648ce6d5eed0c484c81a4d

Ocimum tenuiflorum is a widely used medicinal plant since ancient times and still continues to be irreplaceable due to its properties. The plant has been explored chemically and pharmacologically, however, the molecular studies have been started lately. In an attempt to get a comprehensive overview of the abiotic stress response in O. tenuiflorum, de novo transcriptome sequencing of plant leaves under the cold, drought, flood and salinity stresses was carried out. A comparative differential gene expression (DGE) study was carried out between the common transcripts in each stress with respect to the control. KEGG pathway analysis and gene ontology (GO) enrichment studies exhibited several modifications in metabolic pathways as the result of four abiotic stresses. Besides this, a comparative metabolite profiling of stress and control samples was performed. Among the cold, drought, flood and salinity stresses, the plant was most susceptible to the cold stress. Severe treatments of all these abiotic stresses also decreased eugenol which is the main secondary metabolite present in the O. tenuiflorum plant. This investigation presents a comprehensive analysis of the abiotic stress effects in O. tenuiflorum. Current study provides an insight to the status of pathway genes’ expression that help synthesizing economically valuable phenylpropanoids and terpenoids related to the adaptation of the plant. This study identified several putative abiotic stress tolerant genes which can be utilized to either breed stress tolerant O. tenuiflorum through pyramiding or generating transgenic plants.

]]>
<![CDATA[Genome-enhanced detection and identification of fungal pathogens responsible for pine and poplar rust diseases]]> https://www.researchpad.co/article/5c648cebd5eed0c484c81ab7

Biosurveillance is a proactive approach that may help to limit the spread of invasive fungal pathogens of trees, such as rust fungi which have caused some of the world’s most damaging diseases of pines and poplars. Most of these fungi have a complex life cycle, with up to five spore stages, which is completed on two different hosts. They have a biotrophic lifestyle and may be propagated by asymptomatic plant material, complicating their detection and identification. A bioinformatics approach, based on whole genome comparison, was used to identify genome regions that are unique to the white pine blister rust fungus, Cronartium ribicola, the poplar leaf rust fungi Melampsora medusae and Melampsora larici-populina or to members of either the Cronartium and Melampsora genera. Species- and genus-specific real-time PCR assays, targeting these unique regions, were designed with the aim of detecting each of these five taxonomic groups. In total, twelve assays were developed and tested over a wide range of samples, including different spore types, different infected plant parts on the pycnio-aecial or uredinio-telial host, and captured insect vectors. One hundred percent detection accuracy was achieved for the three targeted species and two genera with either a single assay or a combination of two assays. This proof of concept experiment on pine and poplar leaf rust fungi demonstrates that the genome-enhanced detection and identification approach can be translated into effective real-time PCR assays to monitor tree fungal pathogens.

]]>