ResearchPad - policy-sciences https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Exploring the Paradox of Increased Global Health and Degraded Global Environment: How Much Borrowed Time Is Humanity Living on?]]> https://www.researchpad.co/article/Naac92970-d402-4070-a3c1-7b4596659e95 We have overlooked the apparent paradox of increasing global health status and declining ecological and environmental qualityResource banks, and their largely undervalued nature, hold the key to understanding the global health‐environment balanceMuch more work needs to focus on ripple effects from exploitation of nonrenewable, and nonreplaceable resources

]]>
<![CDATA[Prevalence and Characterization of Staphylococcus aureus and Methicillin‐Resistant Staphylococcus aureus on Public Recreational Beaches in Northeast Ohio]]> https://www.researchpad.co/article/Nc2cf7d05-879f-4ce2-8ce7-439c7751833c

Abstract

Staphylococcus aureus can cause severe life‐threatening illnesses such as sepsis and endocarditis. Although S. aureus has been isolated from marine water and intertidal beach sand, only a few studies have been conducted to assess prevalence of S. aureus at freshwater recreational beaches. As such, we aimed to determine prevalence and molecular characteristics of S. aureus in water and sand at 10 freshwater recreational beaches in Northeast Ohio, USA. Samples were analyzed using standard microbiology methods, and resulting isolates were typed by spa typing and multilocus sequence typing. The overall prevalence of S. aureus in sand and water samples was 22.8% (64/280). The prevalence of methicillin‐resistant S. aureus (MRSA) was 8.2% (23/280). The highest prevalence was observed in summer (45.8%; 55/120) compared to fall (4.2%; 5/120) and spring (10.0%; 4/40). The overall prevalence of Panton‐Valentine leukocidin genes among S. aureus isolates was 21.4% (15/70), and 27 different spa types were identified. The results of this study indicate that beach sand and freshwater of Northeast Ohio were contaminated with S. aureus, including MRSA. The high prevalence of S. aureus in summer months and presence of human‐associated strains may indicate the possibility of role of human activity in S. aureus contamination of beach water and sand. While there are several possible routes for S. aureus contamination, S. aureus prevalence was higher in sites with wastewater treatment plants proximal to the beaches.

]]>
<![CDATA[Population of the temperate mosquito, Culex pipiens, decreases in response to habitat climatological changes in future]]> https://www.researchpad.co/article/Nc80f32d5-17e1-4238-9793-c85a5a3de49a

Abstract

Predictions of the temporal distribution of vector mosquitoes are an important issue for human health because the response of mosquito populations to climate change could have implications for the risk of vector‐borne diseases. To elucidate the effects of climate change on mosquito populations inhabiting temperate regions, we developed a Physiology‐based Climate‐driven Mosquito Population model for temperate regions. For accurately reproducing the temporal patterns observed in mosquito populations, the key factors were identified by implementing the combinations of factors into the model. We focused on three factors: the effect of diapause, the positive effect of rainfall on larval carrying capacity, and the negative effect of rainfall as the washout mortality on aquatic stages. For each model, parameters were calibrated using weekly observation data of a Culex pipiens adult population collected in Tokyo, Japan. Based on its likelihood value, the model incorporating diapause, constant carrying capacity, and washout mortality was the best to replicate the observed data. By using the selected model and applying global climate model data, our results indicated that the mosquito population would decrease and adults’ active season would be shortened under future climate conditions. We found that incorporating the washout effect in the model settings or not caused a difference in the temporal patterns in the projected mosquito populations. This suggested that water resources in mosquito habitats in temperate regions should be considered for predicting the risk of vector‐borne diseases in such regions.

]]>
<![CDATA[A Precipitation Recycling Network to Assess Freshwater Vulnerability: Challenging the Watershed Convention]]> https://www.researchpad.co/article/N4ca51630-e297-4a80-be22-d5fd3b68a500

Abstract

Water resources and water scarcity are usually regarded as local aspects for which a watershed‐based management appears adequate. However, precipitation, as a main source of freshwater, may depend on moisture supplied through land evaporation from outside the watershed. This notion of evaporation as a local “green water” supply to precipitation is typically not considered in hydrological water assessments. Here we propose the concept of a watershed precipitation recycling network, which establishes atmospheric pathways and links land surface evaporation as a moisture supply to precipitation, hence contributing to local but also remote freshwater resources. Our results show that up to 74% of summer precipitation over European watersheds depends on moisture supplied from other watersheds, which contradicts the conventional consideration of autarkic watersheds. The proposed network approach illustrates atmospheric pathways and enables the objective assessment of freshwater vulnerability and water scarcity risks under global change. The illustrated watershed interdependence emphasizes the need for global water governance to secure freshwater availability.

]]>
<![CDATA[A Framework for Global Multicategory and Multiscalar Drought Characterization Accounting for Snow Processes]]> https://www.researchpad.co/article/N5c9c4d4f-5565-4583-bb07-01073f8e7a1b

Abstract

Drought indices do not always provide the most relevant information for water resources management as most of them neglect the role of snow in the land surface water balance. In this study, a physically based drought index, the Standardized Moisture Anomaly Index (SZI), was modified and improved by incorporating the effects of snow dynamics for drought characterization at multiple time scales. The new version of the SZI, called SZIsnow, includes snow in both the water supply and demand in drought characterization by using the water‐energy budgets from the Global Land Data Assimilation Systems product. We compared and evaluated the performance of SZIsnow and SZI in drought identification globally across various time scales using observed multicategory drought evidences from several sources. Results show that the SZIsnow agrees better with the observed changes in hydrological and agricultural droughts than the SZI, particularly over basins with high snow accumulation. Furthermore, the SZIsnow is more consistent with the residual water‐energy ratio than the SZI over snow‐influenced regions. Overall, the SZIsnow can be either a complement or an improvement over the SZI for identifying, monitoring, and characterizing hydrological and agricultural droughts at various scales (e.g., 1–48 months) over high‐latitude and high‐elevation regions that receive snow.

]]>