ResearchPad - pollution:-urban-regional-and-global https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Stringent Emission Control Policies Can Provide Large Improvements in Air Quality and Public Health in India]]> https://www.researchpad.co/article/Nb1098b2b-f8d1-46e9-80dc-86448468f6a3 Air pollution is a major risk factor for human health in IndiaPopulation aging and growth will increase the disease burden due to exposure to particulate air pollution even under no emission changeStringent emission control reduces mortality rate in 2050 below 2015 levels although total premature mortality increases

]]>
<![CDATA[New Approaches to Identifying and Reducing the Global Burden of Disease From Pollution]]> https://www.researchpad.co/article/Nbf7723dd-5647-4f8e-be7f-e9600ebe8e30

Abstract

Pollution from multiple sources causes significant disease and death worldwide. Some sources are legacy, such as heavy metals accumulated in soils, and some are current, such as particulate matter. Because the global burden of disease from pollution is so high, it is important to identify legacy and current sources and to develop and implement effective techniques to reduce human exposure. But many limitations exist in our understanding of the distribution and transport processes of pollutants themselves, as well as the complicated overprint of human behavior and susceptibility.

New approaches are being developed to identify and eliminate pollution in multiple environments. Community‐scale detection of geogenic arsenic and fluoride in Bangladesh is helping to map the distribution of these harmful elements in drinking water. Biosensors such as bees and their honey are being used to measure heavy metal contamination in cities such as Vancouver and Sydney. Drone‐based remote sensors are being used to map metal hot spots in soils from former mining regions in Zambia and Mozambique. The explosion of low‐cost air monitors has allowed researchers to build dense air quality sensing networks to capture ephemeral and local releases of harmful materials, building on other developments in personal exposure sensing. And citizen science is helping communities without adequate resources measure their own environments and in this way gain agency in controlling local pollution exposure sources and/or alerting authorities to environmental hazards. The future of GeoHealth will depend on building on these developments and others to protect a growing population from multiple pollution exposure risks.

]]>
<![CDATA[Prevalence and Characterization of Staphylococcus aureus and Methicillin‐Resistant Staphylococcus aureus on Public Recreational Beaches in Northeast Ohio]]> https://www.researchpad.co/article/Nc2cf7d05-879f-4ce2-8ce7-439c7751833c

Abstract

Staphylococcus aureus can cause severe life‐threatening illnesses such as sepsis and endocarditis. Although S. aureus has been isolated from marine water and intertidal beach sand, only a few studies have been conducted to assess prevalence of S. aureus at freshwater recreational beaches. As such, we aimed to determine prevalence and molecular characteristics of S. aureus in water and sand at 10 freshwater recreational beaches in Northeast Ohio, USA. Samples were analyzed using standard microbiology methods, and resulting isolates were typed by spa typing and multilocus sequence typing. The overall prevalence of S. aureus in sand and water samples was 22.8% (64/280). The prevalence of methicillin‐resistant S. aureus (MRSA) was 8.2% (23/280). The highest prevalence was observed in summer (45.8%; 55/120) compared to fall (4.2%; 5/120) and spring (10.0%; 4/40). The overall prevalence of Panton‐Valentine leukocidin genes among S. aureus isolates was 21.4% (15/70), and 27 different spa types were identified. The results of this study indicate that beach sand and freshwater of Northeast Ohio were contaminated with S. aureus, including MRSA. The high prevalence of S. aureus in summer months and presence of human‐associated strains may indicate the possibility of role of human activity in S. aureus contamination of beach water and sand. While there are several possible routes for S. aureus contamination, S. aureus prevalence was higher in sites with wastewater treatment plants proximal to the beaches.

]]>
<![CDATA[Half‐Century Ammonia Emissions From Agricultural Systems in Southern Asia: Magnitude, Spatiotemporal Patterns, and Implications for Human Health]]> https://www.researchpad.co/article/N6ce220af-6a1d-4bf2-8e7a-31de41e56df3

Abstract

Much concern has been raised about the increasing threat to air quality and human health due to ammonia (NH3) emissions from agricultural systems, which is associated with the enrichment of reactive nitrogen (N) in southern Asia (SA), home of more than 60% the world's population (i.e., the people of West, central, East, South, and Southeast Asia). Southern Asia consumed more than half of the global synthetic N fertilizer and was the dominant region for livestock waste production since 2004. Excessive N application could lead to a rapid increase of NH3 in the atmosphere, resulting in severe air and water pollution in this region. However, there is still a lack of accurate estimates of NH3 emissions from agricultural systems. In this study, we simulated the agricultural NH3 fluxes in SA by coupling the Bidirectional NH3 exchange module (Bi‐NH3) from the Community Multi‐scale Air Quality model with the Dynamic Land Ecosystem Model. Our results indicated that NH3 emissions were 21.3 ± 3.9 Tg N yr−1 from SA agricultural systems with a rapidly increasing rate of ~0.3 Tg N yr−2 during 1961−2014. Among the emission sources, 10.8 Tg N yr−1 was released from synthetic N fertilizer use, and 10.4 ± 3.9 Tg N yr−1 was released from manure production in 2014. Ammonia emissions from China and India together accounted for 64% of the total amount in SA during 2000−2014. Our results imply that the increased NH3 emissions associated with high N inputs to croplands would likely be a significant threat to the environment and human health unless mitigation efforts are applied to reduce these emissions.

]]>
<![CDATA[Hybrid Mass Balance/4D‐Var Joint Inversion of NO x and SO 2 Emissions in East Asia]]> https://www.researchpad.co/article/Ne104e45a-33d7-45d3-b79c-9974fe345cef

Abstract

Accurate estimates of NOx and SO2 emissions are important for air quality modeling and management. To incorporate chemical interactions of the two species in emission estimates, we develop a joint hybrid inversion framework to estimate their emissions in China and India (2005–2012). Pseudo observation tests and posterior evaluation with surface measurements demonstrate that joint assimilation of SO2 and NO2 can provide more accurate constraints on emissions than single‐species inversions. This occurs through synergistic change of O3 and OH concentrations, particularly in conditions where satellite retrievals of the species being optimized have large uncertainties. The percentage changes of joint posterior emissions from the single‐species posterior emissions go up to 242% at grid scales, although the national average of monthly emissions, seasonality, and interannual variations are similar. In China and India, the annual budget of joint posterior SO2 emissions is lower, but joint NOx posterior emissions are higher, because NOx emissions increase to increase SO2 concentration and better match Ozone Monitoring Instrument SO2 observations in high‐NOx regions. Joint SO2 posterior emissions decrease by 16.5% from 2008 to 2012, while NOx posterior emissions increase by 24.9% from 2005 to 2011 in China—trends which are consistent with the MEIC inventory. Joint NOx and SO2 posterior emissions in India increase by 15.9% and 19.2% from 2005 to 2012, smaller than the 59.9% and 76.2% growth rate using anthropogenic emissions from EDGARv4.3.2. This work shows the benefit and limitation of joint assimilation in emission estimates and provides an efficient framework to perform the inversion.

]]>
<![CDATA[SO 2 Emission Estimates Using OMI SO 2 Retrievals for 2005–2017]]> https://www.researchpad.co/article/N6a783255-8e13-48df-b62e-7af6e7554ff5

Abstract

SO2 column densities from Ozone Monitoring Instrument provide important information on emission trends and missing sources, but there are discrepancies between different retrieval products. We employ three Ozone Monitoring Instrument SO2 retrieval products (National Aeronautics and Space Administration (NASA) standard (SP), NASA prototype, and BIRA) to study the magnitude and trend of SO2 emissions. SO2 column densities from these retrievals are most consistent when viewing angles and solar zenith angles are small, suggesting more robust emission estimates in summer and at low latitudes. We then apply a hybrid 4D‐Var/mass balance emission inversion to derive monthly SO2 emissions from the NASA SP and BIRA products. Compared to HTAPv2 emissions in 2010, both posterior emission estimates are lower in United States, India, and Southeast China, but show different changes of emissions in North China Plain. The discrepancies between monthly NASA and BIRA posterior emissions in 2010 are less than or equal to 17% in China and 34% in India. SO2 emissions increase from 2005 to 2016 by 35% (NASA)–48% (BIRA) in India, but decrease in China by 23% (NASA)–33% (BIRA) since 2008. Compared to in situ measurements, the posterior GEOS‐Chem surface SO2 concentrations have reduced NMB in China, the United States, and India but not in South Korea in 2010. BIRA posteriors have better consistency with the annual growth rate of surface SO2 measurement in China and spatial variability of SO2 concentration in China, South Korea, and India, whereas NASA SP posteriors have better seasonality. These evaluations demonstrate the capability to recover SO2 emissions using Ozone Monitoring Instrument observations.

]]>