ResearchPad - polymerase-chain-reaction https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in <i>Chlamydomonas reinhardtii</i>]]> https://www.researchpad.co/article/elastic_article_13864 Generation and subsequent analysis of mutants is critical to understanding the functions of genes and proteins. Here we describe TIM, an efficient, cost-effective, CRISPR-based targeted insertional mutagenesis method for the model organism Chlamydomonas reinhardtii. TIM utilizes delivery into the cell of a Cas9-guide RNA (gRNA) ribonucleoprotein (RNP) together with exogenous double-stranded (donor) DNA. The donor DNA contains gene-specific homology arms and an integral antibiotic-resistance gene that inserts at the double-stranded break generated by Cas9. After optimizing multiple parameters of this method, we were able to generate mutants for six out of six different genes in two different cell-walled strains with mutation efficiencies ranging from 40% to 95%. Furthermore, these high efficiencies allowed simultaneous targeting of two separate genes in a single experiment. TIM is flexible with regard to many parameters and can be carried out using either electroporation or the glass-bead method for delivery of the RNP and donor DNA. TIM achieves a far higher mutation rate than any previously reported for CRISPR-based methods in C. reinhardtii and promises to be effective for many, if not all, non-essential nuclear genes.

]]>
<![CDATA[Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment]]> https://www.researchpad.co/article/elastic_article_13826 Murine gammaherpesvirus 68 is a rodent pathogen that is closely related to the human gammaherpesviruses Epstein-Barr virus and Kaposi’s sarcoma-associated virus. All know gammaherpesviruses are associated with the development of lymphomas, as well as other cancers, in a small subset of infected individuals–particularly those with underlying defects in their immune system (i.e., transplant recipients and HIV infected patients). Because there are very limited small animal models for the human gammaherpesviruses, studies on murine gammaherepsviruses 68 can provide important insights into critical aspects of gammaherpesvirus infections and the association of these viruses with disease development. Another feature of all gammaherpesviruses is their ability to establish a chronic infection of their host–where the virus is maintained for the lifetime of the infected individual. The major target cell harboring chronic gammaherepsvirus infection are B lymphocytes–the cells in the immune system that produce antibodies in response to infections. Here we provide a detailed characterization of the populations of B lymphocytes that become infected by murine gammaherpesvirus 68. This has led to the identification of a specific population of B lymphocytes that is preferentially infected by the virus. This supports a model in which murine gammaherpesvirus infection of B lymphocytes is not random. However, it remains unclear why the virus targets this specific population of B cells for infection.

]]>
<![CDATA[Regulation of cell growth and migration by miR-96 and miR-183 in a breast cancer model of epithelial-mesenchymal transition]]> https://www.researchpad.co/article/elastic_article_7836 Breast cancer is the most commonly diagnosed malignancy in women, and has the second highest mortality rate. Over 90% of all cancer-related deaths are due to metastasis, which is the spread of malignant cells from the primary tumor to a secondary site in the body. It is hypothesized that one cause of metastasis involves epithelial-mesenchymal transition (EMT). When epithelial cells undergo EMT and transition into mesenchymal cells, they display increased levels of cell proliferation and invasion, resulting in a more aggressive phenotype. While many factors regulate EMT, microRNAs have been implicated in driving this process. MicroRNAs are short noncoding RNAs that suppress protein production, therefore loss of microRNAs may promote the overexpression of specific target proteins important for EMT. The goal of this study was to investigate the role of miR-96 and miR-183 in EMT in breast cancer. Both miR-96 and miR-183 were found to be downregulated in post-EMT breast cancer cells. When microRNA mimics were transfected into these cells, there was a significant decrease in cell viability and migration, and a shift from a mesenchymal to an epithelial morphology (mesenchymal-epithelial transition or MET). These MET-related changes may be facilitated in part by the regulation of ZEB1 and vimentin, as both of these proteins were downregulated when miR-96 and miR-183 were overexpressed in post-EMT cells. These findings indicate that the loss of miR-96 and miR-183 may help facilitate EMT and contribute to the maintenance of a mesenchymal phenotype. Understanding the role of microRNAs in regulating EMT is significant in order to not only further elucidate the pathways that facilitate metastasis, but also identify potential therapeutic options for preventing or reversing this process.

]]>
<![CDATA[Specific clones of Trichomonas tenax are associated with periodontitis]]> https://www.researchpad.co/article/5c900d3bd5eed0c48407e3b6

Trichomonas tenax, an anaerobic protist difficult to cultivate with an unreliable molecular identification, has been suspected of involvement in periodontitis, a multifactorial inflammatory dental disease affecting the soft tissue and bone of periodontium. A cohort of 106 periodontitis patients classified by stages of severity and 85 healthy adult control patients was constituted. An efficient culture protocol, a new identification tool by real-time qPCR of T. tenax and a Multi-Locus Sequence Typing system (MLST) based on T. tenax NIH4 reference strain were created. Fifty-three strains of Trichomonas sp. were obtained from periodontal samples. 37/106 (34.90%) T. tenax from patients with periodontitis and 16/85 (18.80%°) T. tenax from control patients were detected by culture (p = 0.018). Sixty of the 191 samples were tested positive for T. tenax by qPCR, 24/85 (28%) controls and 36/106 (34%) periodontitis patients (p = 0.089). By combining both results, 45/106 (42.5%) patients were positive by culture and/or PCR, as compared to 24/85 (28.2%) controls (p = 0.042). A link was established between the carriage in patients of Trichomonas tenax and the severity of the disease. Genotyping demonstrates the presence of strain diversity with three major different clusters and a relation between disease strains and the periodontitis severity (p<0.05). More frequently detected in periodontal cases, T. tenax is likely to be related to the onset or/and evolution of periodontal diseases.

]]>
<![CDATA[Paleogenetic study on the 17th century Korean mummy with atherosclerotic cardiovascular disease]]> https://www.researchpad.co/article/5aafccf3463d7e7f05234537

While atherosclerotic cardiovascular disease (ASCVD) is known to be common among modern people exposed to various risk factors, recent paleopathological studies have shown that it affected ancient populations much more frequently than expected. In 2010, we investigated a 17th century Korean female mummy with presumptive ASCVD signs. Although the resulting report was a rare and invaluable conjecture on the disease status of an ancient East Asian population, the diagnosis had been based only on anatomical and radiological techniques, and so could not confirm the existence of ASCVD in the mummy. In the present study, we thus performed a paleogenetic analysis to supplement the previous conventional diagnosis of ASCVD. In aDNA extracted from the same Korean mummy, we identified the risk alleles of seven different SNPs (rs5351, rs10757274, rs2383206, rs2383207, rs10757278, rs4380028 and rs1333049) that had already been revealed to be the major risk loci of ASCVD in East Asian populations. The reliability of this study could be enhanced by cross-validation using two different analyses: Sanger and SNaPshot techniques. We were able to establish that the 17th century Korean female had a strong genetic predisposition to increased risk of ASCVD. The current paleogenetic diagnosis, the first of its kind outside Europe, re-confirms its utility as an adjunct modality for confirmatory diagnosis of ancient ASCVD.

]]>
<![CDATA[Quantitative real-time PCR as a promising tool for the detection and quantification of leaf-associated fungal species – A proof-of-concept using Alatospora pulchella]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc5cf

Traditional methods to identify aquatic hyphomycetes rely on the morphology of released conidia, which can lead to misidentifications or underestimates of species richness due to convergent morphological evolution and the presence of non-sporulating mycelia. Molecular methods allow fungal identification irrespective of the presence of conidia or their morphology. As a proof-of-concept, we established a quantitative real-time polymerase chain reaction (qPCR) assay to accurately quantify the amount of DNA as a proxy for the biomass of an aquatic hyphomycete species (Alatospora pulchella). Our study showed discrimination even among genetically closely-related species, with a high sensitivity and a reliable quantification down to 9.9 fg DNA (3 PCR forming units; LoD) and 155.0 fg DNA (47 PCR forming units; LoQ), respectively. The assay’s specificity was validated for environmental samples that harboured diverse microbial communities and likely contained PCR-inhibiting substances. This makes qPCR a promising tool to gain deeper insights into the ecological roles of aquatic hyphomycetes and other microorganisms.

]]>
<![CDATA[Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans]]> https://www.researchpad.co/article/Nd1837fa5-7737-42fc-aa07-ce2092d99c03

Hereditary hearing loss is challenging to diagnose because of the heterogeneity of the causative genes. Further, some genes involved in hereditary hearing loss have yet to be identified. Using whole-exome analysis of three families with congenital, severe-to-profound hearing loss, we identified a missense variant of SLC12A2 in five affected members of one family showing a dominant inheritance mode, along with de novo splice-site and missense variants of SLC12A2 in two sporadic cases, as promising candidates associated with hearing loss. Furthermore, we detected another de novo missense variant of SLC12A2 in a sporadic case. SLC12A2 encodes Na+, K+, 2Cl cotransporter (NKCC) 1 and plays critical roles in the homeostasis of K+-enriched endolymph. Slc12a2-deficient mice have congenital, profound deafness; however, no human variant of SLC12A2 has been reported as associated with hearing loss. All identified SLC12A2 variants mapped to exon 21 or its 3’-splice site. In vitro analysis indicated that the splice-site variant generates an exon 21-skipped SLC12A2 mRNA transcript expressed at much lower levels than the exon 21-included transcript in the cochlea, suggesting a tissue-specific role for the exon 21-encoded region in the carboy-terminal domain. In vitro functional analysis demonstrated that Cl influx was significantly decreased in all SLC12A2 variants studied. Immunohistochemistry revealed that SLC12A2 is located on the plasma membrane of several types of cells in the cochlea, including the strial marginal cells, which are critical for endolymph homeostasis. Overall, this study suggests that variants affecting exon 21 of the SLC12A2 transcript are responsible for hereditary hearing loss in humans.

]]>
<![CDATA[Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti]]> https://www.researchpad.co/article/N8479e8f6-b6ad-4aa7-91b1-bf6bde90184a

Background

Aedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood.

Methodology/Principal findings

We examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background.

Conclusions/Significance

Our data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti.

]]>
<![CDATA[Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method]]> https://www.researchpad.co/article/Nb5a6160c-8969-498c-b6ff-671487ce7810

RNA-binding proteins (RBPs) control many types of post-transcriptional regulation, including mRNA splicing, mRNA stability, and translational efficiency, by directly binding to their target RNAs and their mutation and dysfunction are often associated with several human neurological diseases and tumorigenesis. Crosslinking immunoprecipitation (CLIP), coupled with high-throughput sequencing (HITS-CLIP), is a powerful technique for investigating the molecular mechanisms underlying disease pathogenesis by comprehensive identification of RBP target sequences at the transcriptome level. However, HITS-CLIP protocol is still required for some optimization due to experimental complication, low efficiency and time-consuming, whose library has to be generated from very small amounts of RNAs. Here we improved a more efficient, rapid, and reproducible CLIP method by optimizing BrdU-CLIP. Our protocol produced a 10-fold greater yield of pre-amplified CLIP library, which resulted in a low duplicate rate of CLIP-tag reads because the number of PCR cycles required for library amplification was reduced. Variance of the yields was also reduced, and the experimental period was shortened by 2 days. Using this, we validated IL-6 expression by a nuclear RBP, HNRNPU, which directly binds the 3’-UTR of IL-6 mRNA in HeLa cells. Importantly, this interaction was only observed in the cytoplasmic fraction, suggesting a role of cytoplasmic HNRNPU in mRNA stability control. This optimized method enables us to accurately identify target genes and provides a snapshot of the protein-RNA interactions of nucleocytoplasmic shuttling RBPs.

]]>
<![CDATA[Citrate lyase CitE in Mycobacterium tuberculosis contributes to mycobacterial survival under hypoxic conditions]]> https://www.researchpad.co/article/N5c16b8fb-2363-48af-bce8-dbbca8329b25

Mycobacterium tuberculosis is the causative agent of tuberculosis and has evolved an ability to survive in hostile host environments. M. tuberculosis is thought to utilize the rTCA cycle to sustain its latent growth during infection, but the enzymatic characteristics and physiological function for the key citrate lyase of the rTCA cycle, MtbCitE, in the important pathogen remain unclear. In this study, we investigated the function of MtbCitE based on its structural properties and sequence comparisons with other bacterial citrate lyase subunits. We showed that several amino acid residues were important for the citrate cleavage activity of MtbCitE. Strikingly, the citrate cleavage activity of MtbCitE was inhibited by ATP, indicating that energy metabolism might couple with the regulation of MtbCitE activity, which differed from other CitEs. More interestingly, deletion of citE from Mycobacterium bovis BCG decreased the mycobacterial survival rate under hypoxic conditions, whereas complementation with citE restored the phenotype to wild-type levels. Consistently, three key rTCA cycle enzymes were positively regulated under hypoxic conditions in mycobacteria. Therefore, we characterized a unique citrate lyase MtbCitE from M. tuberculosis and found that the CitE protein significantly contributed to mycobacterial survival under hypoxic conditions.

]]>
<![CDATA[Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity]]> https://www.researchpad.co/article/N52f944dc-26d8-4e67-9222-1bf646d955e0

Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.

]]>
<![CDATA[Production of a rabbit monoclonal antibody for highly sensitive detection of citrus mosaic virus and related viruses]]> https://www.researchpad.co/article/Nfb5e596f-2980-40fa-8fa6-576f474cd99c

Citrus mosaic virus (CiMV) is one of the causal viruses of citrus mosaic disease in satsuma mandarins (Citrus unshiu). Prompt detection of trees infected with citrus mosaic disease is important for preventing the spread of this disease. Although rabbit monoclonal antibodies (mAbs) exhibit high specificity and affinity, their applicability is limited by technical difficulties associated with the hybridoma-based technology used for raising these mAbs. Here, we demonstrate a feasible CiMV detection system using a specific rabbit mAb against CiMV coat protein. A conserved peptide fragment of the small subunit of CiMV coat protein was designed and used to immunize rabbits. Antigen-specific antibody-producing cells were identified by the immunospot array assay on a chip method. After cloning of variable regions in heavy or light chain by RT-PCR from these cells, a gene set of 33 mAbs was constructed and these mAbs were produced using Expi293F cells. Screening with the AlphaScreen system revealed eight mAbs exhibiting strong interaction with the antigen peptide. From subsequent sequence analysis, they were grouped into three mAbs denoted as No. 4, 9, and 20. Surface plasmon resonance analysis demonstrated that the affinity of these mAbs for the antigen peptide ranged from 8.7 × 10−10 to 5.5 × 10−11 M. In addition to CiMV, mAb No. 9 and 20 could detect CiMV-related viruses in leaf extracts by ELISA. Further, mAb No. 20 showed a high sensitivity to CiMV and CiMV-related viruses, simply by dot blot analysis. The anti-CiMV rabbit mAbs obtained in this study are envisioned to be extremely useful for practical applications of CiMV detection, such as in a virus detection kit.

]]>
<![CDATA[Accelerated brain aging towards transcriptional inversion in a zebrafish model of the K115fs mutation of human PSEN2]]> https://www.researchpad.co/article/N35618ab8-cca5-47c4-ba7f-8d3941adbaaf

Background

The molecular changes involved in Alzheimer’s disease (AD) progression remain unclear since we cannot easily access antemortem human brains. Some non-mammalian vertebrates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of the PSEN2 gene. PS2V is induced by hypoxia/oxidative stress and shows increased expression in late onset, sporadic AD brains. A unique, early onset familial AD mutation of PSEN2, K115fs, mimics the PS2V coding sequence suggesting that forced, early expression of PS2V-like isoforms may contribute to AD pathogenesis. Here we use zebrafish to model the K115fs mutation to investigate the effects of forced PS2V-like expression on the transcriptomes of young adult and aged adult brains.

Methods

We edited the zebrafish genome to model the K115fs mutation. To explore its effects at the molecular level, we analysed the brain transcriptome and proteome of young (6-month-old) and aged (24-month-old) wild type and heterozygous mutant female sibling zebrafish. Finally, we used gene co-expression network analysis (WGCNA) to compare molecular changes in the brains of these fish to human AD.

Results

Young heterozygous mutant fish show transcriptional changes suggesting accelerated brain aging and increased glucocorticoid signalling. These early changes precede a transcriptional ‘inversion’ that leads to glucocorticoid resistance and other likely pathological changes in aged heterozygous mutant fish. Notably, microglia-associated immune responses regulated by the ETS transcription factor family are altered in both our zebrafish mutant model and in human AD. The molecular changes we observe in aged heterozygous mutant fish occur without obvious histopathology and possibly in the absence of Aβ.

Conclusions

Our results suggest that forced expression of a PS2V-like isoform contributes to immune and stress responses favouring AD pathogenesis. This highlights the value of our zebrafish genetic model for exploring molecular mechanisms involved in AD pathogenesis.

]]>
<![CDATA[Generation of targeted homozygosity in the genome of human induced pluripotent stem cells]]> https://www.researchpad.co/article/Nc0b5af8d-f419-410c-9036-89fcaed1eba6

When loss of heterozygosity (LOH) is correlated with loss or gain of a disease phenotype, it is often necessary to identify which gene or genes are involved. Here, we developed a region-specific LOH-inducing system based on mitotic crossover in human induced pluripotent stem cells (hiPSCs). We first tested our system on chromosome 19. To detect homozygous clones generated by LOH, a positive selection cassette was inserted at the AASV1 locus of chromosome 19. LOHs were generated by the combination of allele-specific double-stranded DNA breaks introduced by CRISPR/Cas9 and suppression of Bloom syndrome (BLM) gene expression by the Tet-Off system. The BLM protein inhibitor ML216 exhibited a similar crossover efficiency and distribution of crossover sites. We next applied this system to the short arm of chromosome 6, where human leukocyte antigen (HLA) loci are located. Genotyping and flow cytometric analysis demonstrated that LOHs associated with chromosomal crossover occurred at the expected positions. Although careful examination of HLA-homozygous hiPSCs generated from parental cells is needed for cancer predisposition and effectiveness of differentiation, they may help to mitigate the current shortcoming of hiPSC-based transplantation related to the immunological differences between the donor and host.

]]>
<![CDATA[Autosomal recessive congenital cataracts linked to HSF4 in a consanguineous Pakistani family]]> https://www.researchpad.co/article/Na302ecef-6336-4a97-9663-2461453833de

Purpose

To investigate the genetic basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous Pakistani family.

Methods

All participating members of family, PKCC074 underwent an ophthalmic examination. Slit-lamp photographs were ascertained for affected individuals that have not been operated for the removal of the cataractous lens. A small aliquot of the blood sample was collected from all participating individuals and genomic DNAs were extracted. A genome-wide scan was performed with polymorphic short tandem repeat (STR) markers and the logarithm of odds (LOD) scores were calculated. All coding exons and exon-intron boundaries of HSF4 were sequenced and expression of Hsf4 in mouse ocular lens was investigated. The C-terminal FLAG-tagged wild-type and mutant HSF4b constructs were prepared to examine the nuclear localization pattern of the mutant protein.

Results

The ophthalmological examinations suggested that nuclear cataracts are present in affected individuals. Genome-wide linkage analyses localized the critical interval to a 10.95 cM (14.17 Mb) interval on chromosome 16q with a maximum two-point LOD score of 4.51 at θ = 0. Sanger sequencing identified a novel missense mutation: c.433G>C (p.Ala145Pro) that segregated with the disease phenotype in the family and was not present in ethnically matched controls. Real-time PCR analysis identified the expression of HSF4 in mouse lens as early as embryonic day 15 with a steady level of expression thereafter. The immunofluorescence tracking confirmed that both wild-type and mutant HSF4 (p.Ala145Pro) proteins localized to the nucleus.

Conclusion

Here, we report a novel missense mutation in HSF4 associated with arCC in a familial case of Pakistani descent.

]]>
<![CDATA[Comparative performance of four rapid Ebola antigen-detection lateral flow immunoassays during the 2014-2016 Ebola epidemic in West Africa]]> https://www.researchpad.co/article/5c8acc8bd5eed0c48498f9b7

Background

Without an effective vaccine, as was the case early in the 2014–2016 Ebola Outbreak in West Africa, disease control depends entirely on interrupting transmission through early disease detection and prompt patient isolation. Lateral Flow Immunoassays (LFI) are a potential supplement to centralized reference laboratory testing for the early diagnosis of Ebola Virus Disease (EVD).

The goal of this study was to assess the performance of commercially available simple and rapid antigen detection LFIs, submitted for review to the WHO via the Emergency Use Assessment and Listing procedure. The study was performed in an Ebola Treatment Centre laboratory involved in EVD testing in Sierra Leone.

In light of the current Ebola outbreak in May 2018 in the Democratic Republic of Congo, which highlights the lack of clarity in the global health community about appropriate Ebola diagnostics, our findings are increasingly critical.

Methods

A cross-sectional study was conducted to assess comparative performance of four LFIs for detecting EVD. LFIs were assessed against the same 328 plasma samples and 100 whole EDTA blood samples, using the altona RealStar Filovirus Screen real-time RT-PCR as the bench mark assay. The performance of the Public Health England (PHE) in-house Zaire ebolavirus-specific real time RT-PCR Trombley assay was concurrently assessed. Statistical analysis using generalized estimating equations was conducted to compare LFI performance.

Findings

Sensitivity and specificity varied between the LFIs, with specificity found to be significantly higher for whole EDTA blood samples compared to plasma samples in at least 2 LFIs (P≤0.003). Using the altona RT-PCR assay as the bench mark, sensitivities on plasma samples ranged from 79.53% (101/127, 95% CI: 71.46–86.17%) for the DEDIATEST EBOLA (SD Biosensor) to 98.43% (125/127, 95% CI: 94.43–99.81%) for the One step Ebola test (Intec). Specificities ranged from 80.20% (158/197, 95% CI: 74.07–88.60%) for plasma samples using the ReEBOV Antigen test Kit (Corgenix) to 100.00% (98/98, 95% CI: 96.31–100.00%) for whole blood samples using the DEDIATEST EBOLA (SD Biosensor) and SD Ebola Zaire Ag (SD Biosensor). Results also showed the Trombley RT-PCR assay had a lower limit of detection than the altona assay, with some LFIs having higher sensitivity than the altona assay when the Trombley assay was the bench mark.

Interpretation

All of the tested EVD LFIs may be considered suitable for use in an outbreak situation (i.e. rule out testing in communities), although they had variable performance characteristics, with none possessing both high sensitivity and specificity. The non-commercial Trombley Zaire ebolavirus RT-PCR assay warrants further investigation, as it appeared more sensitive than the current gold standard, the altona Filovirus Screen RT-PCR assay.

]]>
<![CDATA[A survey on Mycobacterium ulcerans in Mosquitoes and March flies captured from endemic areas of Northern Queensland, Australia]]> https://www.researchpad.co/article/5c784fb8d5eed0c4840073ed

Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU). This nontuberculous mycobacterial infection has been reported in 34 countries worldwide. In Australia, the majority of cases of BU have been recorded in coastal Victoria and the Mossman-Daintree areas of north Queensland. Mosquitoes have been postulated as a vector of M. ulcerans in Victoria, however the specific mode of transmission of this disease is still far from being well understood. In the current study, we trapped and analysed 16,900 (allocated to 845 pools) mosquitoes and 296 March flies from the endemic areas of north Queensland to examine for the presence of M. ulcerans DNA by polymerase chain reaction. Seven of 845 pools of mosquitoes were positive on screening using the IS2404 PCR target (maximum likelihood estimate 0.4/1,000). M. ulcerans DNA was detected from one pool of mosquitoes from which all three PCR targets: IS2404, IS2606 and the ketoreductase B domain of mycolactone polyketide synthase gene were detected. None of the March fly samples were positive for the presence of M. ulcerans DNA.

]]>
<![CDATA[Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand]]> https://www.researchpad.co/article/5c8accecd5eed0c48499033b

Bumblebees (tribe Bombini, genus Bombus Latreille) play a pivotal role as pollinators in mountain regions for both native plants and for agricultural systems. In our survey of northern Thailand, four species of bumblebees (Bombus (Megabombus) montivagus Smith, B. (Alpigenobombus) breviceps Smith, B. (Orientalibombus) haemorrhoidalis Smith and B. (Melanobombus) eximius Smith), were present in 11 localities in 4 provinces (Chiang Mai, Mae Hong Son, Chiang Rai and Nan). We collected and screened 280 foraging worker bumblebees for microsporidia (Nosema spp.) and trypanosomes (Crithidia spp.). Our study is the first to demonstrate the parasite infection in bumblebees in northern Thailand. We found N. ceranae in B. montivagus (5.35%), B. haemorrhoidalis (4.76%), and B. breviceps (14.28%) and N. bombi in B. montivagus (14.28%), B. haemorrhoidalis (11.64%), and B. breviceps (28.257%).

]]>
<![CDATA[Furin, a transcriptional target of NKX2-5, has an essential role in heart development and function]]> https://www.researchpad.co/article/5c897793d5eed0c4847d307a

The homeodomain transcription factor NKX2-5 is known to be essential for both normal heart development and for heart function. But little is yet known about the identities of its downstream effectors or their function during differentiation of cardiac progenitor cells (CPCs). We have used transgenic analysis and CRISPR-mediated ablation to identify a cardiac enhancer of the Furin gene. The Furin gene, encoding a proprotein convertase, is directly repressed by NKX2-5. Deletion of Furin in CPCs is embryonic lethal, with mutant hearts showing a range of abnormalities in the outflow tract. Those defects are associated with a reduction in proliferation and premature differentiation of the CPCs. Deletion of Furin in differentiated cardiomyocytes results in viable adult mutant mice showing an elongation of the PR interval, a phenotype that is consistent with the phenotype of mice and human mutant for Nkx2-5. Our results show that Furin mediate some aspects of Nkx2-5 function in the heart.

]]>
<![CDATA[PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching]]> https://www.researchpad.co/article/5c897795d5eed0c4847d30a7

Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.

]]>