ResearchPad - postural-control https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Is postural dysfunction related to sarcopenia? A population-based study]]> https://www.researchpad.co/article/elastic_article_7695 Postural dysfunction is one of the most common community health symptoms and frequent chief complaints in hospitals. Sarcopenia is a syndrome characterized by degenerative loss of skeletal muscle mass, muscle quality, and muscle strength, and is the main contributor to musculoskeletal impairment in the elderly. Previous studies reported that loss of muscle mass is associated with a loss of diverse functional abilities. Meanwhile, there have been limited studies concerning postural dysfunction among older adults with sarcopenia. Although sarcopenia is primarily a disease of the elderly, its development may be associated with conditions that are not exclusively seen in older persons. Also, recent studies recognize that sarcopenia may begin to develop earlier in life. The objective of this paper was to investigate the association between the prevalence of sarcopenia and postural dysfunction in a wide age range of adults using data from a nationally representative cohort study in Korea. Korean National Health & Nutrition Exhibition Survey V (KNHANES V, 2010–2012) data from the fifth cross-sectional survey of the South Korean population performed by the Korean Ministry of Health and Welfare were used. Appendicular skeletal muscle mass (ASM)/height (ht)2 was used to define sarcopenia, and the Modified Romberg test using a foam pad (“foam balance test”) was performed to evaluate postural dysfunction. ASM/ht2 was lower in women and significantly decreased with age in men. Subjects with sarcopenia were significantly more likely to fail the foam balance test, regardless of sex and age. Regression analysis showed a significant relationship between sarcopenia and postural dysfunction (OR: 2.544, 95% CI: 1.683–3.846, p<0.001). Multivariate regression analysis revealed that sarcopenia (OR: 1.747, 95% CI: 1.120–2.720, p = 0.014) and age (OR: 1.131, 95% CI: 1.105–1.158, p<0.001) are independent risk factors for postural instability. In middle age subjects, the adjusted OR for sarcopenia was 3.344 (95% CI: 1.350–8.285) (p = 0.009). The prevalence of postural dysfunction is higher in sarcopenia patients, independent of sex and age.

]]>
<![CDATA[Postural control of a musculoskeletal model against multidirectional support surface translations]]> https://www.researchpad.co/article/5c897754d5eed0c4847d2a0a

The human body is a complex system driven by hundreds of muscles, and its control mechanisms are not sufficiently understood. To understand the mechanisms of human postural control, neural controller models have been proposed by different research groups, including our feed-forward and feedback control model. However, these models have been evaluated under forward and backward perturbations, at most. Because a human body experiences perturbations from many different directions in daily life, neural controller models should be evaluated in response to multidirectional perturbations, including in the forward/backward, lateral, and diagonal directions. The objective of this study was to investigate the validity of an NC model with FF and FB control under multidirectional perturbations. We developed a musculoskeletal model with 70 muscles and 15 degrees of freedom of joints, positioned it in a standing posture by using the neural controller model, and translated its support surface in multiple directions as perturbations. We successfully determined the parameters of the neural controller model required to maintain the stance of the musculoskeletal model for each perturbation direction. The trends in muscle response magnitudes and the magnitude of passive ankle stiffness were consistent with the results of experimental studies. We conclude that the neural controller model can adapt to multidirectional perturbations by generating suitable muscle activations. We anticipate that the neural controller model could be applied to the study of the control mechanisms of patients with torso tilt and diagnosis of the change in control mechanisms from patients’ behaviors.

]]>
<![CDATA[The effect of contact sport expertise on postural control]]> https://www.researchpad.co/article/5c6f14f5d5eed0c48467abb2

It has been demonstrated that expertise in sport influences standing balance ability. However, little is known concerning how physical contact in sport affects balance ability. The aim of this study was to examine whether differences between contact and limited-contact sport experiences results in differences in postural control. Twenty male collegiate athletes (10 soccer/contact, 10 baseball/limited contact) and ten male untrained students stood quietly on a force plate under various bipedal and unipedal conditions, with and without vision. Significant differences for sway area and COP speed were found between the soccer players and the other two groups for unipedal stances without vision. Soccer players were found to have superior postural control compared with participants involved in limited contact sport or no sport at all. Contact sports may lead to increased postural control through enhanced use of proprioceptive and vestibular information.

]]>
<![CDATA[Balance control during stance - A comparison between horseback riding athletes and non-athletes]]> https://www.researchpad.co/article/5c63395dd5eed0c484ae6555

Horseback riding requires the ability to adapt to changes in balance conditions, to maintain equilibrium on the horse and to prevent falls. Postural adaptation involves specific sensorimotor processes integrating visual information and somesthesic information. The objective of this study was to examine this multisensorial integration on postural control, especially the use of visual and plantar information in static (stable) and dynamic (unstable) postures, among a group of expert horse rider women (n = 10) and a group of non-athlete women (n = 12). Postural control was evaluated through the center of pressure measured with a force platform on stable and unstable supports, with the eyes open and the eyes closed, and with the presence of foam on the support or not. Results showed that expert horse rider women had a better postural stability with unstable support in the mediolateral axis compared to non-athletes. Moreover, on the anteroposterior axis, expert horse riders were less visual dependent and more stable in the presence of foam. Results suggested that horseback riding could help developing particular proprioceptive abilities on standing posture as well as better postural muscle tone during particular bipodal dynamic perturbations. These outcomes provide new insights into horseback riding assets and methodological clues to assess the impact of sport practice.

]]>
<![CDATA[Postural control in healthy adults: Determinants of trunk sway assessed with a chest-worn accelerometer in 12 quiet standing tasks]]> https://www.researchpad.co/article/5c521837d5eed0c4847977f3

Many diseases and conditions decrease the ability to control balance. In clinical settings, there is therefore a major interest in the assessment of postural control. Trunk accelerometry is an easy, low-cost method used for balance testing and constitutes an alternative method to the posturography using force platforms. The objective was to assess the responsiveness of accelerometry in a battery of 12 quiet standing tasks. We evaluated the balance of 100 healthy adults with an accelerometer fixed onto the sternum. We used the average amplitude of acceleration as an indirect measure of postural sways. The tasks of increased difficulty were realized with or without vision. The battery of tasks was repeated four times on two different days to assess reliability. We analyzed the extent to which the task difficulty and the absence of vision affected the trunk sway. The influence of individual characteristics (age, height, mass, sex, and physical activity level) was also assessed. The reliability analysis revealed that four repetitions of the battery of tasks are needed to reach a high accuracy level (mean ICC = 0.85). The results showed that task difficulty had a very large effect on trunk sways and that the removal of vision further increased sways. Concerning the effects of individual characteristics, we observed that women tended to oscillate more than men did in tasks of low difficulty. Age and physical activity level also had significant effects, whereas height and mass did not. In conclusion, age, sex, and physical fitness are confounders that should be considered when assessing patients’ balance. A battery of simple postural tasks measured by upper-trunk accelerometry can be a useful method for simple balance evaluation in clinical settings.

]]>
<![CDATA[Antagonist muscle activity during reactive balance responses is elevated in Parkinson’s disease and in balance impairment]]> https://www.researchpad.co/article/5c57e6c8d5eed0c484ef3d8a

Background

Abnormal antagonist leg muscle activity could indicate increased muscle co-contraction and clarify mechanisms of balance impairments in Parkinson’s disease (PD). Prior studies in carefully selected patients showed PD patients demonstrate earlier, longer, and larger antagonist muscle activation during reactive balance responses to perturbations.

Research question

Here, we tested whether antagonist leg muscle activity was abnormal in a group of PD patients who were not selected for phenotype and most of whom had volunteered for exercise-based rehabilitation.

Methods

We compared antagonist activation during reactive balance responses to multidirectional support-surface translation perturbations in 31 patients with mild-moderate PD (age 68±9; H&Y 1–3; UPDRS-III 32±10) and 13 matched individuals (age 65±9). We quantified modulation of muscle activity (i.e., the ability to activate and inhibit muscles appropriately according to the perturbation direction) using modulation indices (MI) derived from minimum and maximum EMG activation levels observed across perturbation directions.

Results

Antagonist leg muscle activity was abnormal in unselected PD patients compared to controls. Linear mixed models identified significant associations between impaired modulation and PD (P<0.05) and PD severity (P<0.01); models assessing the entire sample without referencing PD status identified associations with balance ability (P<0.05), but not age (P = 0.10).

Significance

Antagonist activity is increased during reactive balance responses in PD patients who are not selected on phenotype and are candidates for exercise-based rehabilitation. This activity may be a mechanism of balance impairment in PD and a potential rehabilitation target or outcome measure.

]]>
<![CDATA[Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia]]> https://www.researchpad.co/article/5bd2324c40307c60de5e9971

Background

Vision plays an important role in controlling posture and balance in children. Reduced postural control has been reported in children with strabismus, but little has been reported specifically in amblyopia.

Objective

To investigate whether children with amblyopia have reduced balance compared to both children with strabismus without amblyopia and healthy controls.

Study design and methods

In this cross-sectional study, a total of 56 patients and healthy controls were recruited from the Ophthalmology and Otolaryngology Clinics at The Hospital for Sick Children, Toronto. Participants were divided into three groups: (1) 18 with unilateral amblyopia (strabismic amblyopia or mixed mechanism); (2) 16 with strabismus only without amblyopia; and (3) 22 visually-normal controls. The primary outcome was the balance performance as measured by the balance subtest of the Bruininks-Oseretsky Test of Motor Proficiency 2 [BOT2].

Results

The age and gender-adjusted BOT2 balance scores were significantly reduced in the amblyopia group (mean score 9.0 ± 3.1 SD) and the strabismus without amblyopia group (mean score 8.6 ± 2.4 SD) compared to visually normal controls (mean score 18.9 ± 4.2) (p<0.0001), but no statistical difference was demonstrated between the two patient groups (p = 0.907). Further subgroup analysis of the strabismus only group did not reveal a statistically significant difference in performance on BOT2 balance score between strabismus only patients with good stereopsis 60 sec or better (BOT2 mean score 9.8±3.0 SD) to patients with 3000 sec or no stereopsis (BOT2 mean score 7.9±1.7) (p = 0.144).

Conclusion

Our findings suggest that normal vision plays an important role in the development and maintenance of balance control. When normal binocular vision is disrupted in childhood in strabismus and/or amblyopia, not only is the vision affected, but balance is also reduced. Our results indicate that the presence of even mild binocular discordance/dysfunction (patients with intermittent strabismus and good stereopsis) may lead to postural instability.

]]>
<![CDATA[Bimodal ankle-foot prosthesis for enhanced standing stability]]> https://www.researchpad.co/article/5bb530cf40307c24312bb0af

Previous work suggests that to restore postural stability for individuals with lower-limb amputation, ankle-foot prostheses should be designed with a flat effective rocker shape for standing. However, most commercially available ankle-foot prostheses are designed with a curved effective rocker shape for walking. To address the demands of both standing and walking, we designed a novel bimodal ankle-foot prosthesis that can accommodate both functional modes using a rigid foot plate and an ankle that can lock and unlock. The primary objective of this study was to determine if the bimodal ankle-foot system could improve various aspects of standing balance (static, dynamic, and functional) and mobility in a group of Veterans with lower-limb amputation (n = 18). Standing balance was assessed while subjects completed a series of tests on a NeuroCom Clinical Research System (NeuroCom, a Division of Natus, Clackamas, OR), including a Sensory Organization Test, a Limits of Stability Test, and a modified Motor Control Test. Few statistically significant differences were observed between the locked and unlocked ankle conditions while subjects completed these tests. However, in the absence of visual feedback, the locked bimodal ankle appeared to improve static balance in a group of experienced lower-limb prosthesis users whose PLUS-M mobility rating was higher than approximately 73% of the sample population used to develop the PLUS-M survey. Given the statistically significant increase in mean equilibrium scores between the unlocked and locked conditions (p = 0.004), future testing of this system should focus on new amputees and lower mobility users (e.g., Medicare Functional Classification Level K1 and K2 prosthesis users). Furthermore, commercial implementation of the bimodal ankle-foot system should include a robust control system that can automatically switch between modes based on the user’s activity.

]]>
<![CDATA[Stance Postural Strategies in Patients with Chronic Inflammatory Demyelinating Polyradiculoneuropathy]]> https://www.researchpad.co/article/5989db39ab0ee8fa60bd4117

Introduction

Polyneuropathy leads to postural instability and an increased risk of falling. We investigated how impaired motor impairment and proprioceptive input due to neuropathy influences postural strategies.

Methods

Platformless bisegmental posturography data were recorded in healthy subjects and patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Each subject stood on the floor, wore a head and a hip electromagnetic tracker. Sway amplitude and velocity were recorded and the mean direction difference (MDD) in the velocity vector between trackers was calculated as a flexibility index.

Results

Head and hip postural sway increased more in patients with CIDP than in healthy controls. MDD values reflecting hip strategies also increased more in patients than in controls. In the eyes closed condition MDD values in healthy subjects decreased but in patients remained unchanged.

Discussion

Sensori-motor impairment changes the balance between postural strategies that patients adopt to maintain upright quiet stance. Motor impairment leads to hip postural strategy overweight (eyes open), and prevents strategy re-balancing when the sensory context predominantly relies on proprioceptive input (eyes closed).

]]>
<![CDATA[Static and Dynamic Postural Changes after a Mountain Ultra-Marathon of 80 km and 5500 D+]]> https://www.researchpad.co/article/5989db07ab0ee8fa60bc89e8

The study aimed to investigate the effect of fatigue on static and dynamic postural stability after completing a mountain ultra-marathon. Twelve male athletes participated in the study. Postural stability was assessed before and immediately after the race. Static postural stability was evaluated on a dynamometric platform with eyes opened (OE) and closed (CE). Dynamic postural stability was assessed with OE on an instrumented plate which allowed medio-lateral oscillations. Stabilometric data were affected by fatigue in the OE condition, concerning sway path velocity (p = 0.0006), sway area velocity (p = 0.0006), area of the confidence ellipse (p = 0.0016), maximal anterior-posterior (AP) (p = 0.0017) and medio-lateral (ML) (p = 0.0039) oscillations. In the CE condition the sway path velocity (p = 0.0334), the maximal ML oscillations (p = 0.0161) and the area of the confident ellipse (p = 0.0180) were also negatively influenced. Stabilogram diffusion analysis showed in the OE condition an increase of short-term diffusion coefficients considering the anterior-posterior direction (Dfys; p = 0.0023) and the combination of the two (Dfr2s; p = 0.0032). Equally, long term diffusion coefficients increased considering the anterior-posterior direction (Dfyl; p = 0.0093) and the combination of the two (Dfr2l; p = 0.0086). In CE condition greater values were detected for medio-lateral direction (Dfxl; p = 0.033), anterior-posterior direction (Dfyl; p = 0.0459) and the combination of the two (Dfr2l; p = 0.0048). The dynamic postural stability test showed an increase of the time spent with the edges of the plate on the floor (p = 0.0152). Our results showed that mountain ultra-marathon altered static stability more than dynamic stability. An involvement of cognitive resources to monitor postural stability after fatiguing could be the explanation of the worsening in the automatic task (quiet standing) and of the positive compensation in the less automatic task (dynamic standing on the instrumented plate).

]]>
<![CDATA[Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm]]> https://www.researchpad.co/article/5989da4fab0ee8fa60b8d70d

Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent’s clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1) maximum isometric handgrip strength (HGSmax) and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax) and 2) the balance of 13 judo athletes at national (n = 8) and international (n = 5) competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI) and body composition (JAWON) were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E) measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer) and balance (biplate balance platform) were measured before warm-up (T1), before the WAnT test (T2), and after (T3). Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI) than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1), athletes showed higher strength (more divergent from the calculated ½HGSmax value) compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts.

]]>
<![CDATA[Postural Responses to a Suddenly Released Pulling Force in Older Adults with Chronic Low Back Pain: An Experimental Study]]> https://www.researchpad.co/article/5989dad2ab0ee8fa60bb6c14

Chronic low back pain (CLBP), one of the most common musculoskeletal conditions in older adults, might affect balance and functional independence. The purpose of this study was to investigate the postural responses to a suddenly released pulling force in older adults with and without CLBP. Thirty community-dwelling older adults with CLBP and 26 voluntary controls without CLBP were enrolled. Participants were required to stand on a force platform while, with one hand, they pulled a string that was fastened at the other end to a 2-kg or to a 4-kg force in the opposite direction at a random order. The number of times the participants lost their balance and motions of center of pressure (COP) when the string was suddenly released were recorded. The results demonstrated that although the loss of balance rates for each pulling force condition did not differ between groups, older adults with CLBP had poorer postural responses: delayed reaction, larger displacement, higher velocity, longer path length, and greater COP sway area compared to the older controls. Furthermore, both groups showed larger postural responses in the 4-kg pulling force condition. Although aging is generally believed to be associated with declining balance and postural control, these findings highlight the effect of CLBP on reactive balance when responding to an externally generated force in an older population. This study also suggests that, for older adults with CLBP, in addition to treating them for pain and disability, reactive balance evaluation and training, such as reaction and movement strategy training should be included in their interventions. Clinicians and older patients with CLBP need to be made aware of the significance of impaired reactive balance and the increased risk of falls when encountering unexpected perturbations.

]]>
<![CDATA[Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses]]> https://www.researchpad.co/article/5989da5eab0ee8fa60b908d0

With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task.

]]>
<![CDATA[Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc44b

In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A “posture-first” principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution.

]]>
<![CDATA[Using data from the Microsoft Kinect 2 to determine postural stability in healthy subjects: A feasibility trial]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdca3c

The objective of this study was to determine whether kinematic data collected by the Microsoft Kinect 2 (MK2) could be used to quantify postural stability in healthy subjects. Twelve subjects were recruited for the project, and were instructed to perform a sequence of simple postural stability tasks. The movement sequence was performed as subjects were seated on top of a force platform, and the MK2 was positioned in front of them. This sequence of tasks was performed by each subject under three different postural conditions: “both feet on the ground” (1), “One foot off the ground” (2), and “both feet off the ground” (3). We compared force platform and MK2 data to quantify the degree to which the MK2 was returning reliable data across subjects. We then applied a novel machine-learning paradigm to the MK2 data in order to determine the extent to which data from the MK2 could be used to reliably classify different postural conditions. Our initial comparison of force plate and MK2 data showed a strong agreement between the two devices, with strong Pearson correlations between the trunk centroids “Spine_Mid” (0.85 ± 0.06), “Neck” (0.86 ± 0.07) and “Head” (0.87 ± 0.07), and the center of pressure centroid inferred by the force platform. Mean accuracy for the machine learning classifier from MK2 was 97.0%, with a specific classification accuracy breakdown of 90.9%, 100%, and 100% for conditions 1 through 3, respectively. Mean accuracy for the machine learning classifier derived from the force platform data was lower at 84.4%. We conclude that data from the MK2 has sufficient information content to allow us to classify sequences of tasks being performed under different levels of postural stability. Future studies will focus on validating this protocol on large populations of individuals with actual balance impairments in order to create a toolkit that is clinically validated and available to the medical community.

]]>
<![CDATA[Generation of the Human Biped Stance by a Neural Controller Able to Compensate Neurological Time Delay]]> https://www.researchpad.co/article/5989da74ab0ee8fa60b95d9d

The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption.

]]>
<![CDATA[Balance and Muscle Strength in Elderly Women Who Dance Samba]]> https://www.researchpad.co/article/5989da53ab0ee8fa60b8e61c

Considering the growth of the aging population, and the increasing risk for falls and related morbidity, it is vital to seek efficient, comprehensive, and culturally relevant prevention programs for elderly people to reduce risks for falls. The aim of the present study was to evaluate the postural balance and muscle strength among women participating in the "Wing of Baianas" in the carnival parades. One hundred and ten women, with an average age of 67.4±5.9 years, were divided into two groups: Baianas group—elderly participants of the carnival parades in the “Wing of Baianas”, and a Control group of women who do not dance samba. Assessments included a physical activity questionnaire, isokinetic muscle strength testing for the knee extensors and flexors, and a postural balance assessment completed on a force platform. There were no differences between groups, for postural balance outcomes, during the eyes open condition; however, with eyes closed, there was a significant effect between groups (Baianas vs Control) in all variables. The Baianas group showed less medio-lateral displacement (p < 0.04); and anteroposterior displacement (p < 0.007); larger amplitudes of medio-lateral displacement (p < 0.001); and anteroposterior displacement (p < 0.001); increased mean velocity (p < 0.01); and elliptical area (p < 0.01) There were no differences in the isokinetic peak torque corrected by body weight, total work and flexor/extensor ratio. Participation in the Wing of Baianas is associated with better balance with closed eyes, but there were no differences between dancers and non-dancers for muscle strength.

]]>
<![CDATA[Postural Effects of Vestibular Manipulation Depend on the Physical Activity Status]]> https://www.researchpad.co/article/5989d9d2ab0ee8fa60b649d4

The purpose of this study was to compare the effects of galvanic vestibular stimulation (GVS) on postural control for participants of different physical activity status (i.e. active and non-active). Two groups of participants were recruited: one group of participants who regularly practised sports activities (active group, n = 17), and one group of participants who did not practise physical and/or sports activities (non-active group, n = 17). They were compared in a reference condition (i.e bipedal stance with eyes open) and four vestibular manipulation condition (i.e. GVS at 0.5 mA and 3 mA, in accordance with two designs) lasting 20 seconds. The centre of foot pressure displacement velocities were compared between the two groups. The main results indicate that the regular practice of sports activities counteracts postural control disruption caused by GVS. The active group demonstrated better postural control than the non-active group when subjected to higher vestibular manipulation. The active group may have developed their ability to reduce the influence of inaccurate vestibular signals. The active participants could identify the relevant sensory input, thought a better central integration, which enables them to switch faster between sensory inputs.

]]>
<![CDATA[Dependence of Gait Deviation on Weight-Bearing Asymmetry and Postural Instability in Children with Unilateral Cerebral Palsy]]> https://www.researchpad.co/article/5989daecab0ee8fa60bbf677

Postural control deficits have been suggested to be a major component of gait disorders in children with cerebral palsy. The purpose of this study was to investigate the relationship between postural stability and treadmill walking, in children with unilateral cerebral palsy, by defining dependence between the posturographic weight-bearing distribution and center of pressure (CoP) sway during quiet standing with Gillette Gait Index and the 16 distinct gait parameters that composed the Gillette Gait Index. Forty-five children with unilateral cerebral palsy from 7–12 years of age were included in this study. A posturographic procedure and 3-dimensional instrumented gait analysis was developed. In general, across the entire tested group, the significant correlations concerned only the asymmetry of the weight bearing and a few of the distinct gait parameters that compose the Gillette Gait Index; moreover, correlation coefficients were low. The division of subjects into two clinical subgroups: children that exhibited a tendency to overload (1) and to underload (2) the affected body side, modified the results of the explored relationships. Our findings revealed that the difficulties experienced by children with hemiplegia while controlled in a standing position result from tendency to excessively or insufficiently load the affected lower limbs, and thus establishes a direct relationship with inadequate affected peak ankle DF in both stance and swing gait phases. Given the presented relationship between postural instability and deviation of the particular gait parameters in children with unilateral cerebral palsy, a follow-up study will be needed to determine the therapeutic approaches that will be most effective in promoting increased improvement in gait pattern, as well as the static and dynamic balance in standing.

]]>
<![CDATA[Dynamic postural control and associated attentional demands in contemporary dancers versus non-dancers]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbf69

Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.

]]>