ResearchPad - powdery-mildew https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Rediscovering an old foe: Optimised molecular methods for DNA extraction and sequencing applications for fungarium specimens of powdery mildew (Erysiphales)]]> https://www.researchpad.co/article/elastic_article_14476 The purpose of this study was to identify a reliable DNA extraction protocol to use on 25-year-old powdery mildew specimens from the reference collection VPRI in order to produce high quality sequences suitable to address taxonomic phylogenetic questions. We tested 13 extraction protocols and two library preparation kits and found the combination of the E.Z.N.A.® Forensic DNA kit for DNA extraction and the NuGen Ovation® Ultralow System library preparation kit was the most suitable for this purpose.

]]>
<![CDATA[Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity]]> https://www.researchpad.co/article/5c141ec3d5eed0c484d2821a

Human activities including those in crop gene banks are subject to errors, especially during seed multiplication and maintenance of seed germination. Therefore, the most serious problem of gene banks is authenticity of the accessions and their genotypic purity. There are many methods for determining the identity of varieties, but comparisons between current data and past records are not easy since the latter are often missing. Breeding barley resistant to powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) was traditionally based on incorporating major genes into new varieties and the results have been published. Our goal was to identify resistance genes to powdery mildew in accessions of the Czech spring barley core collection and compare these data with earlier information to establish the authenticity of the accessions. Two hundred and twenty-three accessions of the collection including 665 single plant progenies were tested. Sixty-four selected reference isolates of Bgh representing the world diversity of the pathogen were used for resistance tests. Twenty-two known resistance genes were postulated either separately or in combinations. In the collection, 151 homogeneous accessions were found, but the resistances of nine of them were inconsistent with published data and in 12 accessions their authenticity is doubtful. The remaining 72 accessions were heterogeneous and comprised 176 resistance genotypes, 54 of which were probably mechanical admixtures of other varieties. There are several pathogens of cereals, e.g. rusts and mildews, against which many resistance genes in host crops have also been exploited. Knowledge of these resistances can assist in maintaining pure and genuine stocks in gene banks. Seed purity and the authenticity of accessions can subsequently be checked with more advanced methods.

]]>
<![CDATA[Identification and evaluation of resistance to powdery mildew and yellow rust in a wheat mapping population]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdff86

Deployment of cultivars with genetic resistance is an effective approach to control the diseases of powdery mildew (PM) and yellow rust (YR). Chinese wheat cultivar XK0106 exhibits high levels of resistance to both diseases, while cultivar E07901 has partial, adult plant resistance (APR). The aim of this study was to map resistance loci derived from the two cultivars and analyze their effects against PM and YR in a range of environments. A doubled haploid population (388 lines) was used to develop a framework map consisting of 117 SSR markers, while a much higher density map using the 90K Illumina iSelect SNP array was produced with a subset of 80 randomly selected lines. Seedling resistance was characterized against a range of PM and YR isolates, while field scores in multiple environments were used to characterize APR. Composite interval mapping (CIM) of seedling PM scores identified two QTLs (QPm.haas-6A and QPm.haas-2A), the former being located at the Pm21 locus. These QTLs were also significant in field scores, as were Qpm.haas-3A and QPm.haas-5A. QYr.haas-1B-1 and QYr.haas-2A were identified in field scores of YR and were located at the Yr24/26 and Yr17 chromosomal regions respectively. A second 1B QTL, QYr.haas-1B-2 was also identified. QPm.haas-2A and QYr.haas-1B-2 are likely to be new QTLs that have not been previously identified. Effects of the QTLs were further investigated in multiple environments through the testing of selected lines predicted to contain various QTL combinations. Significant additive interactions between the PM QTLs highlighted the ability to pyramid these loci to provide higher level of resistance. Interactions between the YR QTLs gave insights into the pathogen populations in the different locations as well as showing genetic interactions between these loci.

]]>
<![CDATA[Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces]]> https://www.researchpad.co/article/5989dad9ab0ee8fa60bb90a5

Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

]]>
<![CDATA[Promoting the Use of Common Oat Genetic Resources through Diversity Analysis and Core Collection Construction]]> https://www.researchpad.co/article/5989dae4ab0ee8fa60bbca1c

The assessment of diversity and population structure and construction of a core collection is beneficial for the efficient use and management of germplasm. A unique collection of common oat landraces, cultivated in the temperate climate of central Europe until the end of the twentieth century, is preserved in the Polish gene bank. It consists of 91 accessions that have never been used in breeding programs. In order to optimise the use of this genetic resource, we aimed to: (1) determine genetic and agro-morphological diversity, (2) identify internal genetic variation of the tested accessions, (3) form a core collection and (4) recognise the accessions useful for breeding programs or re-release for cultivation. The collection was screened using ISSR markers (1520 loci) and eight agro-morphological traits. Uniquely, we performed molecular studies based on 24 individuals of every accession instead of bulk samples. Therefore, assessment of the degree of diversity within each population and the identification of overlapping gene pools were possible. The observed internal diversity (Nei unbiased coefficient) was in the range of 0.17–0.31. Based on combined genetic and agro-morphological data, we established the core collection composed of 21 landraces. Due to valuable compositions of important traits, some accessions were also identified as useful for breeding programs. The population structure and principal coordinate analysis revealed two major clusters. Based on the previous results, the accessions classified within the smaller one were identified as obsolete varieties instead of landraces. Our results show that the oat landraces are, in general, resistant to local races of diseases, well adapted to local conditions and, in some cases, yielding at the level of modern varieties. Therefore, in situ conservation of the landraces in the near future may be satisfactory for both farmers and researchers in terms of the genetic resources preservation.

]]>
<![CDATA[Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538]]> https://www.researchpad.co/article/5989da76ab0ee8fa60b969ac

The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs.

]]>
<![CDATA[Powdery Mildew Decreases the Radial Growth of Oak Trees with Cumulative and Delayed Effects over Years]]> https://www.researchpad.co/article/5989da1cab0ee8fa60b7d527

Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001–2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70–90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production.

]]>
<![CDATA[Stronger diversity effects with increased environmental stress: A study of multitrophic interactions between oak, powdery mildew and ladybirds]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc964

Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduopunctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress.

]]>
<![CDATA[Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat]]> https://www.researchpad.co/article/5989da57ab0ee8fa60b8f1ef

Lesion mimics (LMs) that exhibit spontaneous disease-like lesions in the absence of pathogen attack might confer enhanced plant disease resistance to a wide range of pathogens. The LM mutant, lm3 was derived from a single naturally mutated individual in the F1 population of a 3-1/Jing411 cross, backcrossed six times with 3–1 as the recurrent parent and subsequently self-pollinated twice. The leaves of young seedlings of the lm3 mutant exhibited small, discrete white lesions under natural field conditions. The lesions first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. The lesions were initiated through light intensity and day length. Histochemical staining revealed that lesion formation might reflect programmed cell death (PCD) and abnormal accumulation of reactive oxygen species (ROS). The chlorophyll content in the mutant was significantly lower than that in wildtype, and the ratio of chlorophyll a/b was increased significantly in the mutant compared with wildtype, indicating that lm3 showed impairment of the biosynthesis or degradation of chlorophyll, and that Chlorophyll b was prone to damage during lesion formation. The lm3 mutant exhibited enhanced resistance to wheat powdery mildew fungus (Blumeria graminis f. sp. tritici; Bgt) infection, which was consistent with the increased expression of seven pathogenesis-related (PR) and two wheat chemically induced (WCI) genes involved in the defense-related reaction. Genetic analysis showed that the mutation was controlled through a single partially dominant gene, which was closely linked to Xbarc203 on chromosome 3BL; this gene was delimited to a 40 Mb region between SSR3B450.37 and SSR3B492.6 using a large derived segregating population and the available Chinese Spring chromosome 3B genome sequence. Taken together, our results provide information regarding the identification of a novel wheat LM gene, which will facilitate the additional fine-mapping and cloning of the gene to understand the mechanism underlying LM initiation and disease resistance in common wheat.

]]>
<![CDATA[Cultivar-Based Introgression Mapping Reveals Wild Species-Derived Pm-0, the Major Powdery Mildew Resistance Locus in Squash]]> https://www.researchpad.co/article/5989da1cab0ee8fa60b7d462

Powdery mildew is a major fungal disease on squash and pumpkin (Cucurbita spp.) in the US and throughout the world. Genetic resistance to the disease is not known to occur naturally within Cucurbita pepo and only infrequently in Cucurbita moschata, but has been achieved in both species through the introgression of a major resistance gene from the wild species Cucurbita okeechobeensis subsp. martinezii. At present, this gene, Pm-0, is used extensively in breeding, and is found in nearly all powdery mildew-resistant C. pepo and C. moschata commercial cultivars. In this study, we mapped C. okeechobeensis subsp. martinezii-derived single nucleotide polymorphism (SNP) alleles in a set of taxonomically and morphologically diverse and resistant C. pepo and C. moschata cultivars bred at Cornell University that, by common possession of Pm-0, form a shared-trait introgression panel. High marker density was achieved using genotyping-by-sequencing, which yielded over 50,000 de novo SNP markers in each of the three Cucurbita species genotyped. A single 516.4 kb wild-derived introgression was present in all of the resistant cultivars and absent in a diverse set of heirlooms that predated the Pm-0 introgression. The contribution of this interval to powdery mildew resistance was confirmed by association mapping in a C. pepo cultivar panel that included the Cornell lines, heirlooms, and 68 additional C. pepo cultivars and with an independent F2 population derived from C. okeechobeensis subsp. martinezii x C. moschata. The interval was refined to a final candidate interval of 76.4 kb and CAPS markers were developed inside this interval to facilitate marker-assisted selection.

]]>
<![CDATA[De novo Analysis of the Epiphytic Transcriptome of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii and Identification of Candidate Secreted Effector Proteins]]> https://www.researchpad.co/article/5989da0bab0ee8fa60b77ac2

The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus’s agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis. To design more durable control strategies, genomic information about P. xanthii is needed. Powdery mildews are fungal pathogens with large genomes compared with those of other fungi, which contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. To reduce genome complexity, in this work we aimed to obtain and analyse the epiphytic transcriptome of P. xanthii as a starting point for genomic research. Total RNA was isolated from epiphytic fungal material, and the corresponding cDNA library was sequenced using a 454 GS FLX platform. Over 676,562 reads were obtained and assembled into 37,241 contigs. Annotation data identified 8,798 putative genes with different orthologues. As described for other powdery mildew fungi, a similar set of missing core ascomycete genes was found, which may explain obligate biotrophy. To gain insight into the plant-pathogen relationships, special attention was focused on the analysis of the secretome. After this analysis, 137 putative secreted proteins were identified, including 53 candidate secreted effector proteins (CSEPs). Consistent with a putative role in pathogenesis, the expression profile observed for some of these CSEPs showed expression maxima at the beginning of the infection process at 24 h after inoculation, when the primary appressoria are mostly formed. Our data mark the onset of genomics research into this very important pathogen of cucurbits and shed some light on the intimate relationship between this pathogen and its host plant.

]]>