ResearchPad - preclinical-studies https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Anticancer activity of a novel methylated analogue of <i>L-</i>mimosine against an in vitro model of human malignant melanoma]]> https://www.researchpad.co/article/elastic_article_6123 The anticancer activity of a series of novel synthesized, hydroxypyridone-based metal chelators (analogues of L-mimosine) was evaluated in an in vitro model of melanoma consisting of malignant melanoma (A375), non-melanoma epidermoid carcinoma (A431) and immortalized non-malignant keratinocyte (HaCaT) cells. More specifically, we have demonstrated that the L-enantiomer of a methylated analogue of L-mimosine (compound 22) can exert a potent anticancer effect in A375 cells when compared to either A431 or HaCaT cells. Moreover, we have demonstrated that this analogue has the ability to i) promote increased generation of reactive oxygen species (ROS), ii) activate both intrinsic and extrinsic apoptosis and iii) induce perturbations in cell cycle growth arrest. Our data highlights the potential of compound 22 to act as a promising therapeutic agent against an in vitro model of human malignant melanoma.

Electronic supplementary materialThe online version of this article (10.1007/s10637-019-00809-0) contains supplementary material, which is available to authorized users. ]]>
<![CDATA[The influence of the coadministration of the p-glycoprotein modulator elacridar on the pharmacokinetics of lapatinib and its distribution in the brain and cerebrospinal fluid]]> https://www.researchpad.co/article/elastic_article_6086 Background Lapatinib is a small-molecule tyrosine kinase inhibitor of human epidermal receptor 2 (HER2) and EGFR that has currently been approved for the treatment of HER2-positive advanced and metastatic breast cancer (BC). The ATP-binding cassette (ABC) family of transporters includes P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2), which substantially restrict the penetration of drugs, including chemotherapeutics, through the blood-brain barrier and blood-cerebrospinal fluid barrier. The aim of this study was to investigate the effects of elacridar, an ABCB1 and ABCG2 inhibitor, on the brain and cerebrospinal fluid uptake of lapatinib. Methods Rats were divided into two groups: one group received 5 mg/kg elacridar and 100 mg/kg lapatinib (an experimental group), and the other group received 100 mg/kg lapatinib (a control group). Lapatinib concentrations in the blood plasma (BP), cerebrospinal fluid (CSF) and brain tissue (BT) were measured by liquid chromatography coupled with tandem mass spectrometry. Results Elacridar significantly increased lapatinib penetration into the CSF and BT (Cmax increase of 136.4% and 54.7% and AUC0-∞ increase of 53.7% and 86.5%, respectively). The Cmax of lapatinib in BP was similar in both experimental groups (3057.5 vs. 3257.5 ng/mL, respectively). Conclusion This study showed that elacridar influenced the pharmacokinetics of lapatinib. The inhibition of ABCB1 and ABCG2 transporters by elacridar substantially enhanced the penetration of lapatinib into the CSF and BT. The blocking of protein transporters could become indispensable in the treatment of patients with breast cancer and brain metastases.

Electronic supplementary materialThe online version of this article (10.1007/s10637-019-00806-3) contains supplementary material, which is available to authorized users. ]]>
<![CDATA[Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway]]> https://www.researchpad.co/article/Nf9a5c9b1-2d1e-42e9-9ac0-c2b81fba8868

Summary

Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese medicines, has been proven to have a wide range of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. Previous studies have confirmed that emodin has inhibitory effects on various solid tumors, such as osteosarcoma, liver cancer, prostate cancer and glioma. This study aimed to investigate the effects and mechanisms of emodin-induced necroptosis in the glioma cell line U251 by targeting the TNF-α/RIP1/RIP3 signaling pathway. We found that emodin could significantly inhibit U251 cell proliferation, and the viability of U251 cells treated with emodin was reduced in a dose- and time-dependent manner. Flow cytometry assays and Hoechst-PI staining assays showed that emodin induced apoptosis and necroptosis. Real-time PCR and western blot analysis showed that emodin upregulated the levels of TNF-α, RIP1, RIP3 and MLKL. Furthermore, the RIP1 inhibitor Nec-1 and the RIP3 inhibitor GSK872 attenuated the killing effect of emodin on U251 cells. In addition, emodin could increase the levels of TNF-α, RIP1, RIP3 and MLKL in vivo. The results demonstrate that emodin could induce necroptosis in glioma possibly through the activation of the TNF-α/RIP1/RIP3 axis. These studies provide novel insight into the induction of necroptosis by emodin and indicate that emodin might be a potential candidate for treating glioma through the necroptosis pathway.

]]>
<![CDATA[Stress vulnerability promotes an alcohol‐prone phenotype in a preclinical model of sustained depression]]> https://www.researchpad.co/article/N9aee7003-b3b2-4237-b0ef-623d8cc90f7c

Abstract

Major depression and alcohol‐related disorders frequently co‐occur. Depression severity weighs on the magnitude and persistence of comorbid alcohol use disorder (AUD), with severe implications for disease prognosis. Here, we investigated whether depression vulnerability drives propensity to AUD at the preclinical level. We used the social defeat–induced persistent stress (SDPS) model of chronic depression in combination with operant alcohol self‐administration (SA). Male Wistar rats were subjected to social defeat (five episodes) and prolonged social isolation (~12 weeks) and subsequently classified as SDPS‐prone or SDPS‐resilient based on their affective and cognitive performance. Using an operant alcohol SA paradigm, acquisition, motivation, extinction, and cue‐induced reinstatement of alcohol seeking were examined in the two subpopulations. SDPS‐prone animals showed increased alcohol SA, heightened motivation to acquire alcohol, persistent alcohol seeking despite alcohol unavailability, signs of extinction resistance, and increased cue‐induced relapse; the latter could be blocked by the α2 adrenoreceptor agonist guanfacine. In SDPS‐resilient rats, prior exposure to social defeat increased alcohol SA without affecting any other measures of alcohol seeking and alcohol taking. Our data revealed that depression proneness confers vulnerability to alcohol, emulating patterns of alcohol dependence seen in human addicts, and that depression resilience to a large extent protects from the development of AUD‐like phenotypes. Furthermore, our data suggest that stress exposure alone, independently of depressive symptoms, alters alcohol intake in the long‐term.

]]>
<![CDATA[Optogenetic inhibition of cocaine seeking in rats]]> https://www.researchpad.co/article/5b9f775940307c2cabf5e0d2

Inhibitory optogenetics was used to examine the roles of the prelimbic cortex (PL), the nucleus accumbens core (NAcore) and the PL projections to the NAcore in the reinstatement of cocaine seeking. Rats were microinjected into the PL or NAcore with an adeno-associated virus containing halorhodopsin or archaerhodopsin. After 12 days of cocaine self-administration, followed by extinction training, animals underwent reinstatement testing along with the presence/absence of optically induced inhibition via laser light. Bilateral optical inhibition of the PL, NAcore or the PL fibers in the NAcore inhibited the reinstatement of cocaine seeking.

]]>