ResearchPad - protozoans https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A twenty-eight-year laboratory-based retrospective trend analysis of malaria in Dakar, Senegal]]> https://www.researchpad.co/article/elastic_article_14736 Health facility-based records offer a rich source of information to understand trends and changes in malaria cases over time. This study is aimed at determining the changes in malaria occurrence over the last 28 years, from 1989 to 2016 in Dakar, Senegal.MethodsLaboratory suspected and confirmed malaria records from 1989 to 2016 were reviewed from the laboratory registers of the Laboratory of Parasitology and Mycology of Aristide Le Dantec Hospital. Interrupted time series (ITS) analysis was used to estimate the changes by comparing malaria cases post-intervention (2006–2016) with that of the pre-intervention (1989–2005) period.ResultsA total of 5,876 laboratory confirmed malaria cases were reported out of 29,852 tested cases, with total slide positivity rate (SPR) of 19.7%. Malaria case counts exhibited a fluctuating trend with major peaks occurring in the years 1995 and 2003 with SPR of 42.3% and 42.5%, respectively. Overall, a remarkable decline in the total number of laboratory confirmed malaria cases was observed over the last 28 years. P. falciparum was almost the only reported species, accounting for 99.98% of cases. The highest SPR was observed in the age group of under five years during the pre-intervention period while this shifted to the age group of 6–15 years old for the subsequent years. Two major malaria peak seasons were observed: one in September during the pre-intervention period and the other in November for the post-intervention period. The ITS analysis showed a dramatic decline of 83.6% in SPR following the scale-up of interventions in 2006.ConclusionA remarkable decline in laboratory confirmed malaria cases in Dakar over 28 years was observed. The period of rapid decline in malaria SPR coincided with the scale-up in interventions beginning in 2006 with the introduction of ACTs, followed by the widespread introduction in 2008 of bed nets treated with insecticides. Robust surveillance data should be maintained in the context of malaria elimination efforts. ]]> <![CDATA[Spatial serosurvey of anti-<i>Toxoplasma gondii</i> antibodies in individuals with animal hoarding disorder and their dogs in Southern Brazil]]> https://www.researchpad.co/article/elastic_article_14734 Despite vulnerability and unsanitary conditions of animal hoarding may predispose environmental contamination and spread of vectors and pathogens, no study to date has focused on their impact on public health and zoonotic diseases. Accordingly, this study aimed to assess the seroprevalence of anti-Toxoplasma gondii antibodies and associated factors in individuals with animal hoarding disorder (AHD) and their dogs in Curitiba, Southern Brazil. Blood samples were obtained from 264 dogs (21 households) and 19 individuals with AHD (11 households). Their blood was tested by indirect fluorescent antibody test (IFAT). Overall, anti-Toxoplasma gondii seropositivity was found in 21/264 dogs (7.95%; 95% CI: 4.69–11.22) with titers ranging from 16 to 4096, and in 7/19 individuals with AHD (36.84%; CI: 15.15–58.53) with titers ranging from 16 to 64. Serological analysis for anti-T. gondii antibodies were considered positive in at least one individual or dog in 9/11 (81.82%; 95% CI: 59.03–100.00) cases that were thoroughly assessed. Surprisingly, the seropositivity of individuals with AHD and their dogs was among the lowest reportedly observed in human and dog populations of Brazil. There was no significant association between positive owners and positive dogs or the presence of cats in the household. Regard epidemiological variables, a significant association was found between dog’s seropositivity and the type of dog food. To the authors’ knowledge, the present study represents the first investigation of T. gondii seroprevalence in individuals with hoarding disorder and their dogs. In conclusion, despite low sanitary conditions, anti-Toxoplasma gondii antibodies frequency in individuals with AHD and their dogs are lower than the general population likely due to low protozoan load in such isolated households.

]]>
<![CDATA[Indoor and outdoor residual spraying of a novel formulation of deltamethrin K-Othrine<sup>®</sup> (Polyzone) for the control of simian malaria in Sabah, Malaysia]]> https://www.researchpad.co/article/elastic_article_14704 Since 2000, human malaria cases in Malaysia were rapidly reduced with the use of insecticides in Indoor Residual Spray (IRS) and Long-Lasting Insecticide Net (LLIN). Unfortunately, monkey malaria in humans has shown an increase especially in Sabah and Sarawak. The insecticide currently used in IRS is deltamethrin K-Othrine® WG 250 wettable granule, targeting mosquitoes that rest and feed indoor. In Sabah, the primary vector for knowlesi malaria is An. balabacensis a species known to bite outdoor. This study evaluates an alternative method, the Outdoor Residual Spray (ORS) using a novel formulation of deltamethrin K-Othrine® (PolyZone) to examine it suitability to control knowlesi malaria vector in Sabah, compared to the current method. The study was performed at seven villages in Sabah having similar type of houses (wood, bamboo and concrete). Houses were sprayed with deltamethrin K-Othrine® (PolyZone) at two different dosages, 25 mg/m2 and 30 mg/m2 and deltamethrin K-Othrine® WG 250 wettable granule at 25 mg/m2, sprayed indoor and outdoor. Residual activity on different walls was assessed using standard cone bioassay techniques. For larval surveillances, potential breeding sites were surveyed. Larvae were collected and identified, pre and post spraying. Adult survey was done using Human Landing Catch (HLC) performed outdoor and indoor. Detection of malaria parasite in adults was conducted via microscopy and molecular methods. Deltamethrin K-Othrine® (PolyZone) showed higher efficacy when sprayed outdoor. The efficacy was found varied when sprayed on different types of wall surfaces. Deltamethrin K-Othrine® (PolyZone) at 25 mg/m2 was the most effective with regards to ability to high mortality and effective knock down (KD). The vector population was reduced significantly post-spraying and reduction in breeding sites as well. The number of simian malaria infected vector, human and simian malaria transmission were also greatly reduced.

]]>
<![CDATA[Novel malaria antigen <i>Plasmodium yoelii</i> E140 induces antibody-mediated sterile protection in mice against malaria challenge]]> https://www.researchpad.co/article/elastic_article_14592 Only a small fraction of the antigens expressed by malaria parasites have been evaluated as vaccine candidates. A successful malaria subunit vaccine will likely require multiple antigenic targets to achieve broad protection with high protective efficacy. Here we describe protective efficacy of a novel antigen, Plasmodium yoelii (Py) E140 (PyE140), evaluated against P. yoelii challenge of mice. Vaccines targeting PyE140 reproducibly induced up to 100% sterile protection in both inbred and outbred murine challenge models. Although PyE140 immunization induced high frequency and multifunctional CD8+ T cell responses, as well as CD4+ T cell responses, protection was mediated by PyE140 antibodies acting against blood stage parasites. Protection in mice was long-lasting with up to 100% sterile protection at twelve weeks post-immunization and durable high titer anti-PyE140 antibodies. The E140 antigen is expressed in all Plasmodium species, is highly conserved in both P. falciparum lab-adapted strains and endemic circulating parasites, and is thus a promising lead vaccine candidate for future evaluation against human malaria parasite species.

]]>
<![CDATA[A mathematical model for assessing the effectiveness of controlling relapse in Plasmodium vivax malaria endemic in the Republic of Korea]]> https://www.researchpad.co/article/Nf3d8dda1-10e2-4286-9776-07d534017a03

Malaria has persisted as an endemic near the Demilitarized Zone in the Republic of Korea since the re-emergence of Plasmodium vivax malaria in 1993. The number of patients affected by malaria has increased recently despite many controls tools, one of the reasons behind which is the relapse of malaria via liver hypnozoites. Tafenoquine, a new drug approved by the United States Food and Drug Administration in 2018, is expected to reduce the rate of relapse of malaria hypnozoites and thereby decrease the prevalence of malaria among the population. In this work, we have developed a new transmission model for Plasmodium vivax that takes into account a more realistic intrinsic distribution from existing literature to quantify the current values of relapse parameters and to evaluate the effectiveness of the anti-relapse therapy. The model is especially suitable for estimating parameters near the Demilitarized Zone in Korea, in which the disease follows a distinguishable seasonality. Results were shown that radical cure could significantly reduce the prevalence level of malaria. However, eradication would still take a long time (over 10 years) even if the high-level treatment were to persist. In addition, considering that the vector’s behavior is manipulated by the malaria parasite, relapse repression through vector control at the current level may result in a negative effect in containing the disease. We conclude that the use of effective drugs should be considered together with the increased level of the vector control to reduce malaria prevalence.

]]>
<![CDATA[Behavior and abundance of Anopheles darlingi in communities living in the Colombian Amazon riverside]]> https://www.researchpad.co/article/5c8acc3ed5eed0c48498f2cc

In the past few years, relative frequencies of malaria parasite species in communities living in the Colombian Amazon riverside have changed, being Plasmodium vivax (61.4%) and Plasmodium malariae (43.8%) the most frequent. Given this epidemiological scenario, it is important to determine the species of anophelines involved in these parasites’ transmission. This study was carried out in June 2016 in two indigenous communities living close to the tributaries of the Amazon River using protected human bait. The results of this study showed a total abundance of 1,085 mosquitos, of which 99.2% corresponded to Anopheles darlingi. Additionally, only two anopheline species were found, showing low diversity in the study areas. Molecular confirmation of some individuals was then followed by evolutionary analysis by using the COI gene. Nested PCR was used for identifying the three Plasmodium species circulating in the study areas. Of the two species collected in this study, 21.0% of the An. darlingi mosquitoes were infected with P. malariae, 21.9% with P. vivax and 10.3% with Plasmodium falciparum. It exhibited exophilic and exophagic behavior in both study areas, having marked differences regarding its abundance in each community (Tipisca first sampling 49.4%, Tipisca second sampling 39.6% and Doce de Octubre 10.9%). Interestingly, An. mattogrossensis infected by P. vivax was found for the first time in Colombia (in 50% of the four females collected). Analysis of An. darlingi COI gene diversity indicated a single population maintaining a high gene flow between the study areas. The An. darlingi behavior pattern found in both communities represents a risk factor for the region’s inhabitants living/working near these sites. This highlights the need for vector control efforts such as the use of personal repellents and insecticides for use on cattle, which must be made available in order to reduce this Anopheline’s abundance.

]]>
<![CDATA[Phosphodiesterase beta is the master regulator of cAMP signalling during malaria parasite invasion]]> https://www.researchpad.co/article/5c99020cd5eed0c484b97558

Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase β (PDEβ) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEβ-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEβ plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.

]]>
<![CDATA[Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand]]> https://www.researchpad.co/article/5c8accecd5eed0c48499033b

Bumblebees (tribe Bombini, genus Bombus Latreille) play a pivotal role as pollinators in mountain regions for both native plants and for agricultural systems. In our survey of northern Thailand, four species of bumblebees (Bombus (Megabombus) montivagus Smith, B. (Alpigenobombus) breviceps Smith, B. (Orientalibombus) haemorrhoidalis Smith and B. (Melanobombus) eximius Smith), were present in 11 localities in 4 provinces (Chiang Mai, Mae Hong Son, Chiang Rai and Nan). We collected and screened 280 foraging worker bumblebees for microsporidia (Nosema spp.) and trypanosomes (Crithidia spp.). Our study is the first to demonstrate the parasite infection in bumblebees in northern Thailand. We found N. ceranae in B. montivagus (5.35%), B. haemorrhoidalis (4.76%), and B. breviceps (14.28%) and N. bombi in B. montivagus (14.28%), B. haemorrhoidalis (11.64%), and B. breviceps (28.257%).

]]>
<![CDATA[In vitro and ex vivo evaluation of the anti-Giardia duodenalis activity of the supernatant of Slab51 (SivoMixx)]]> https://www.researchpad.co/article/5c8acce0d5eed0c4849901f8

The effects on Giardia duodenalis of Slab51 probiotic supernatants were evaluated in vitro and ex vivo. In vitro, Slab51 (101 UFC) was cultured and the obtained supernatant was filtered, adjusted at pH 7, and added (100μl/ml) as such (Slab51 FS) or after heat-treatment, to G. duodenalis cultures to evaluate its effects on G. duodenalis trophozoites growth and adherence. For comparison, negative and metronidazole (20μg/ml) treated controls were used. The morphological and ultrastructural alterations of G. duodenals trophozoites following treatment with Slab51 FS supernatant were investigated by transmission electron microscopy. Ex vivo, mice duodenal portions were cultivated in standard conditions with 5x105 G. duodenalis trophozoites/ml, while to further five duodenal portions similarly cultured and infected, Slab51 FS 200μl was added. After 12 and 18h, samples were fixed in 10% buffered formalin and histologically processed to score Giardia infection and cell damage. Cell proliferation/apoptosis was scored by Ki67, TUNEL and Caspase–3 tests. All experiments were conducted in triplicate throughout the study. All data were statistically evaluated (P< 0.05). Results showed that Slab51 FS significantly reduced Giardia growth and adherence respect to negative controls, but its efficacy was overall lower than that of metronidazole. Moreover, the effects of Slab51 FS were significantly lowered by heat-treatment and this reduction was statistically higher at 90°C than at 56°C, indicating a heat-sensitive nature of active Slab51 FS compounds. At the ultrastructural level, Slab51 FS treated Giardia trophozoites were swelling, increased in size and showed alterations of their cellular membrane and vacuole patterns, loss of the nuclear envelope and nuclear architecture. In ex vivo trials, viable G. duodenalis trophozoites and enterocyte TUNEL+ and Caspase-3 expression were significantly reduced in intestinal sections added with Slab51 FS, while enterocyte Ki67 expression was significantly increased, confirming the anti-G. duodenalis activity of Slab51 FS observed in vitro. In conclusion, results from this study showed that the fresh culture supernatant of the commercial probiotic Slab51 has anti-G. duodenalis properties both in vitro and ex vivo in a mouse model.

]]>
<![CDATA[Host-parasite interaction explains variation in the prevalence of avian haemosporidians at the community level]]> https://www.researchpad.co/article/5c897744d5eed0c4847d2876

Parasites are a selective force that shape host community structure and dynamics, but host communities can also influence parasitism. Understanding the dual nature from host-parasite interactions can be facilitated by quantifying the variation in parasite prevalence among host species and then comparing that variation to other ecological factors that are known to also shape host communities. Avian haemosporidian parasites (e.g. Plasmodium and Haemoproteus) are abundant and widespread representing an excellent model for the study of host-parasite interactions. Several geographic and environmental factors have been suggested to determine prevalence of avian haemosporidians in bird communities. However, it remains unknown whether host and parasite traits, represented by phylogenetic distances among species and degree of specialization in host-parasite relationships, can influence infection status. The aims of this study were to analyze factors affecting infection status in a bird community and to test whether the degree of parasite specialization on their hosts is determined by host traits. Our statistical analyses suggest that infection status is mainly determined by the interaction between host species and parasite lineages where tolerance and/or susceptibility to parasites plays an essential role. Additionally, we found that although some of the parasite lineages infected a low number of bird individuals, the species they infected were distantly related and therefore the parasites themselves should not be considered typical host specialists. Infection status was higher for generalist than for specialist parasites in some, but not all, host species. These results suggest that detected prevalence in a species mainly results from the interaction between host immune defences and parasite exploitation strategies wherein the result of an association between particular parasite lineages and particular host species is idiosyncratic.

]]>
<![CDATA[Antibody responses to Plasmodium vivax Duffy binding and Erythrocyte binding proteins predict risk of infection and are associated with protection from clinical Malaria]]> https://www.researchpad.co/article/5c706793d5eed0c4847c7266

Background

The Plasmodium vivax Duffy Binding Protein (PvDBP) is a key target of naturally acquired immunity. However, region II of PvDBP, which contains the receptor-binding site, is highly polymorphic. The natural acquisition of antibodies to different variants of PvDBP region II (PvDBPII), including the AH, O, P and Sal1 alleles, the central region III-V (PvDBPIII-V), and P. vivax Erythrocyte Binding Protein region II (PvEBPII) and their associations with risk of clinical P. vivax malaria are not well understood.

Methodology

Total IgG and IgG subclasses 1, 2, and 3 that recognize four alleles of PvDBPII (AH, O, P, and Sal1), PvDBPIII-V and PvEBPII were measured in samples collected from a cohort of 1 to 3 year old Papua New Guinean (PNG) children living in a highly endemic area of PNG. The levels of binding inhibitory antibodies (BIAbs) to PvDBPII (AH, O, and Sal1) were also tested in a subset of children. The association of presence of IgG with age, cumulative exposure (measured as the product of age and malaria infections during follow-up) and prospective risk of clinical malaria were evaluated.

Results

The increase in antigen-specific total IgG, IgG1, and IgG3 with age and cumulative exposure was only observed for PvDBPII AH and PvEBPII. High levels of total IgG and predominant subclass IgG3 specific for PvDBPII AH were associated with decreased incidence of clinical P. vivax episodes (aIRR = 0.56–0.68, P≤0.001–0.021). High levels of total IgG and IgG1 to PvEBPII correlated strongly with protection against clinical vivax malaria compared with IgGs against all PvDBPII variants (aIRR = 0.38, P<0.001). Antibodies to PvDBPII AH and PvEBPII showed evidence of an additive effect, with a joint protective association of 70%.

Conclusion

Antibodies to the key parasite invasion ligands PvDBPII and PvEBPII are good correlates of protection against P. vivax malaria in PNG. This further strengthens the rationale for inclusion of PvDBPII in a recombinant subunit vaccine for P. vivax malaria and highlights the need for further functional studies to determine the potential of PvEBPII as a component of a subunit vaccine for P. vivax malaria.

]]>
<![CDATA[The role of TLR9 on Leishmania amazonensis infection and its influence on intranasal LaAg vaccine efficacy]]> https://www.researchpad.co/article/5c7d95ebd5eed0c484734fa1

Leishmania (L.) amazonensis is one of the etiological agents of cutaneous leishmaniasis (CL) in Brazil. Currently, there is no vaccine approved for human use against leishmaniasis, although several vaccine preparations are in experimental stages. One of them is Leishvacin, or LaAg, a first-generation vaccine composed of total L. amazonensis antigens that has consistently shown an increase of mouse resistance against CL when administered intranasally (i.n.). Since Toll-like receptor 9 (TLR9) is highly expressed in the nasal mucosa and LaAg is composed of TLR9-binding DNA CpG motifs, in this study we proposed to investigate the role of TLR9 in both L. amazonensis infection and in LaAg vaccine efficacy in C57BL/6 (WT) mice and TLR9-/- mice. First, we evaluated, the infection of macrophages by L. amazonensis in vitro, showing no significant difference between macrophages from WT and TLR9-/- mice in terms of both infection percentage and total number of intracellular amastigotes, as well as NO production. In addition, neutrophils from WT and TLR9-/- mice had similar capacity to produce neutrophil extracellular traps (NETs) in response to L. amazonensis. L. amazonensis did not activate dendritic cells from WT and TLR9-/- mice, analysed by MHCII and CD86 expression. However, in vivo, TLR9-/- mice were slightly more susceptible to L. amazonensis infection than WT mice, presenting a larger lesion and an increased parasite load at the peak of infection and in the chronic phase. The increased TLR9-/- mice susceptibility was accompanied by an increased IgG and IgG1 production; a decrease of IFN-γ in infected tissue, but not IL-4 and IL-10; and a decreased number of IFN-γ producing CD8+ T cells, but not CD4+ T cells in the lesion-draining lymph nodes. Also, TLR9-/- mice could not control parasite growth following i.n. LaAg vaccination unlike the WT mice. This protection failure was associated with a reduction of the hypersensitivity response induced by immunization. The TLR9-/- vaccinated mice failed to respond to antigen stimulation and to produce IFN-γ by lymph node cells. Together, these results suggest that TLR9 contributes to C57BL/6 mouse resistance against L. amazonensis, and that the TLR9-binding LaAg comprising CpG motifs may be important for intranasal vaccine efficacy against CL.

]]>
<![CDATA[In vitro activity and mode of action of phenolic compounds on Leishmania donovani]]> https://www.researchpad.co/article/5c7d95f4d5eed0c48473501e

Background

Leishmaniasis is a disease caused by the protozoan parasite, Leishmania. The disease remains a global threat to public health requiring effective chemotherapy for control and treatment. In this study, the effect of some selected phenolic compounds on Leishmania donovani was investigated. The compounds were screened for their anti-leishmanial activities against promastigote and intracellular amastigote forms of Leishmania donovani.

Methodology/Principal findings

The dose dependent effect and cytotoxicity of the compounds were determined by the MTT assay. Flow cytometry was used to determine the effect of the compounds on the cell cycle. Parasite morphological analysis was done by microscopy and growth kinetic studies were conducted by culturing cells and counting at 24 hours intervals over 120 hours. The cellular levels of iron in promastigotes treated with compounds was determined by atomic absorption spectroscopy and the effect of compounds on the expression of iron dependent enzymes was investigated using RT-qPCR.

The IC50 of the compounds ranged from 16.34 μM to 198 μM compared to amphotericin B and deferoxamine controls. Rosmarinic acid and apigenin were the most effective against the promastigote and the intracellular amastigote forms. Selectivity indexes (SI) of rosmarinic acid and apigenin were 15.03 and 10.45 respectively for promastigotes while the SI of 12.70 and 5.21 respectively was obtained for intracellular amastigotes. Morphologically, 70% of rosmarinic acid treated promastigotes showed rounded morphology similar to the deferoxamine control. About 30% of cells treated with apigenin showed distorted cell membrane. Rosmarinic acid and apigenin induced cell arrest in the G0/G1 phase in promastigotes. Elevated intracellular iron levels were observed in promastigotes when parasites were treated with rosmarinic acid and this correlated with the level of expression of iron dependent genes.

Conclusions/Significance

The data suggests that rosmarinic acid exerts its anti-leishmanial effect via iron chelation resulting in variable morphological changes and cell cycle arrest.

]]>
<![CDATA[Etiology and severity of diarrheal diseases in infants at the semiarid region of Brazil: A case-control study]]> https://www.researchpad.co/article/5c6730b1d5eed0c484f37eef

Background

Diarrheal diseases are an important cause of morbidity and mortality among children in developing countries. We aimed to study the etiology and severity of diarrhea in children living in the low-income semiarid region of Brazil.

Methodology

This is a cross-sectional, age-matched case-control study of diarrhea in children aged 2–36 months from six cities in Brazil’s semiarid region. Clinical, epidemiological, and anthropometric data were matched with fecal samples collected for the identification of enteropathogens.

Results

We enrolled 1,200 children, 596 cases and 604 controls. By univariate analysis, eight enteropathogens were associated with diarrhea: Norovirus GII (OR 5.08, 95% CI 2.10, 12.30), Adenovirus (OR 3.79, 95% CI 1.41, 10.23), typical enteropathogenic Escherichia coli (tEPEC), (OR 3.28, 95% CI 1.39, 7.73), enterotoxigenic E. coli (ETEC LT and ST producing toxins), (OR 2.58, 95% CI 0.99, 6.69), rotavirus (OR 1.91, 95% CI 1.20, 3.02), shiga toxin-producing E. coli (STEC; OR 1.77, 95% CI 1.16, 2.69), enteroaggregative E. coli (EAEC), (OR 1.45, 95% CI 1.16, 1.83) and Giardia spp. (OR 1.39, 95% CI 1.05, 1.84). By logistic regression of all enteropathogens, the best predictors of diarrhea were norovirus, adenovirus, rotavirus, STEC, Giardia spp. and EAEC. A high diarrhea severity score was associated with EAEC.

Conclusions

Six enteropathogens: Norovirus, Adenovirus, Rotavirus, STEC, Giardia spp., and EAEC were associated with diarrhea in children from Brazil’s semiarid region. EAEC was associated with increased diarrhea severity.

]]>
<![CDATA[Evaluation of a class of isatinoids identified from a high-throughput screen of human kinase inhibitors as anti-Sleeping Sickness agents]]> https://www.researchpad.co/article/5c6730afd5eed0c484f37eca

New treatments are needed for neglected tropical diseases (NTDs) such as Human African trypanosomiasis (HAT), Chagas disease, and schistosomiasis. Through a whole organism high-throughput screening campaign, we previously identified 797 human kinase inhibitors that grouped into 59 structural clusters and showed activity against T. brucei, the causative agent of HAT. We herein report the results of further investigation of one of these clusters consisting of substituted isatin derivatives, focusing on establishing structure-activity and -property relationship scope. We also describe their in vitro absorption, distribution, metabolism, and excretion (ADME) properties. For one isatin, NEU-4391, which offered the best activity-property profile, pharmacokinetic parameters were measured in mice.

]]>
<![CDATA[Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new mass spectra library]]> https://www.researchpad.co/article/5c5df366d5eed0c48458120f

Phlebotomine sand flies are insects that are highly relevant in medicine, particularly as the sole proven vectors of leishmaniasis. Accurate identification of sand fly species is an essential prerequisite for eco-epidemiological studies aiming to better understand the disease. Traditional morphological identification is painstaking and time-consuming, and molecular methods for extensive screening remain expensive. Recent studies have shown that matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a promising tool for rapid and cost-effective identification of arthropod vectors, including sand flies. The aim of this study was to validate the use of MALDI-TOF MS for the identification of Northern Amazonian sand flies. We constituted a MALDI-TOF MS reference database comprising 29 species of sand flies that were field-collected in French Guiana, which are expected to cover many of the more common species of the Northern Amazonian region, including known vectors of leishmaniasis. Carrying out a blind test, all the sand flies tested (n = 157) with a log (score) threshold greater than 1.7 were correctly identified at the species level. We confirmed that MALDI-TOF MS protein profiling is a useful tool for the study of sand flies, including neotropical species, known for their great diversity. An application that includes the spectra generated here will be available to the scientific community in the near future via an online platform.

]]>
<![CDATA[Algorithms for sequential interpretation of a malaria rapid diagnostic test detecting two different targets of Plasmodium species to improve diagnostic accuracy in a rural setting (Nanoro, Burkina Faso)]]> https://www.researchpad.co/article/5c6dc99fd5eed0c484529f2d

Background

Malaria rapid diagnostic tests (RDT) have limitations due to the persistence of histidine-rich protein 2 (HRP2) antigen after treatment and low sensitivity of Plasmodium lactate dehydrogenase (pLDH) based RDTs. To improve the diagnosis of malaria in febrile children, two diagnostic algorithms, based on sequential interpretation of a malaria rapid diagnostic test detecting two different targets of Plasmodium species and followed by expert microscopy, were evaluated.

Methods

Two diagnostic algorithms were evaluated using 407 blood samples collected between April and October 2016 from febrile children and the diagnostic accuracy of both algorithms was determined. Algorithm 1: The result of line T1-HRP2 were read first; if negative, malaria infection was considered to be absent. If positive, confirmation was done with the line T2-pLDH. If T2-pLDH test was negative, the malaria diagnosis was considered as “inconclusive” and microscopy was performed; Algorithm 2: The result of line T2-pLDH were read first; if positive, malaria infection was considered to be present. If negative, confirmation was done with the line T1-HRP2. If T1-HRP2 was positive the malaria diagnosis was considered as “inconclusive” and microscopy was performed. In absence of malaria microscopy, a malaria infection was ruled out in children with an inconclusive diagnostic test result when previous antimalarial treatment was reported.

Results

For single interpretation, the sensitivity of PfHRP2 was 98.4% and the specificity was 74.2%, and for the pLDH test the sensitivity was 89.3% and the specificity was 98.8%. Malaria was accurately diagnosed using both algorithms in 84.5% children. The algorithms with the two-line malaria RDT classified the test results into two groups: conclusive and inconclusive results. The diagnostic accuracy for conclusive results was 98.3% using diagnostic algorithm 1 and 98.6% using algorithm 2. The sensitivity and specificity for the conclusive results were 98.2% and 98.4% for algorithm 1, and 98.6% and 98.4% for algorithm 2, respectively. There were 63 (15.5%) children who had an “inconclusive” result for whom expert microscopy was needed. In children with inconclusive results (PfHRP2+/pLDH- only) previous antimalarial treatment was reported in 16 children with malaria negative microscopy (16/40; 40%) and 1 child with malaria positive microscopy (1/23; 4.3%).

Conclusion

The strategy of sequential interpretation of two-line malaria RDT can improve the diagnosis of malaria. However, some cases will still require confirmative testing with microscopy or additional investigations on previous antimalarial treatment.

]]>
<![CDATA[Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix]]> https://www.researchpad.co/article/5c648d19d5eed0c484c81fa6

Trypanosoma cruzi, the etiological agent of Chagas’ disease, affects 8 million people predominantly living in socioeconomic underdeveloped areas. T. cruzi trypomastigotes (Ty), the classical infective stage, interact with the extracellular matrix (ECM), an obligatory step before invasion of almost all mammalian cells in different tissues. Here we have characterized the proteome and phosphoproteome of T. cruzi trypomastigotes upon interaction with ECM (MTy) and the data are available via ProteomeXchange with identifier PXD010970. Proteins involved with metabolic processes (such as the glycolytic pathway), kinases, flagellum and microtubule related proteins, transport-associated proteins and RNA/DNA binding elements are highly represented in the pool of proteins modified by phosphorylation. Further, important metabolic switches triggered by this interaction with ECM were indicated by decreases in the phosphorylation of hexokinase, phosphofructokinase, fructose-2,6-bisphosphatase, phosphoglucomutase, phosphoglycerate kinase in MTy. Concomitantly, a decrease in the pyruvate and lactate and an increase of glucose and succinate contents were detected by GC-MS. These observations led us to focus on the changes in the glycolytic pathway upon binding of the parasite to the ECM. Inhibition of hexokinase, pyruvate kinase and lactate dehydrogenase activities in MTy were observed and this correlated with the phosphorylation levels of the respective enzymes. Putative kinases involved in protein phosphorylation altered upon parasite incubation with ECM were suggested by in silico analysis. Taken together, our results show that in addition to cytoskeletal changes and protease activation, a reprogramming of the trypomastigote metabolism is triggered by the interaction of the parasite with the ECM prior to cell invasion and differentiation into amastigotes, the multiplicative intracellular stage of T. cruzi in the vertebrate host.

]]>
<![CDATA[A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites]]> https://www.researchpad.co/article/5c648d3cd5eed0c484c82311

Endosymbiosis has driven major molecular and cellular innovations. Plasmodium spp. parasites that cause malaria contain an essential, non-photosynthetic plastid—the apicoplast—which originated from a secondary (eukaryote–eukaryote) endosymbiosis. To discover organellar pathways with evolutionary and biomedical significance, we performed a mutagenesis screen for essential genes required for apicoplast biogenesis in Plasmodium falciparum. Apicoplast(−) mutants were isolated using a chemical rescue that permits conditional disruption of the apicoplast and a new fluorescent reporter for organelle loss. Five candidate genes were validated (out of 12 identified), including a triosephosphate isomerase (TIM)-barrel protein that likely derived from a core metabolic enzyme but evolved a new activity. Our results demonstrate, to our knowledge, the first forward genetic screen to assign essential cellular functions to unannotated P. falciparum genes. A putative TIM-barrel enzyme and other newly identified apicoplast biogenesis proteins open opportunities to discover new mechanisms of organelle biogenesis, molecular evolution underlying eukaryotic diversity, and drug targets against multiple parasitic diseases.

]]>
<![CDATA[Induction of oxidative stress, apoptosis and DNA damage by koumine in Tetrahymena thermophila]]> https://www.researchpad.co/article/5c6c75aad5eed0c4843cffa5

Koumine is a component of the Chinese medicinal herb Gelsemium elegans and is toxic to vertebrates. We used the ciliate Tetrahymena thermophila as a model to evaluate the toxic effects of this indole alkaloid in eukaryotic microorganisms. Koumine inhibited T. thermophila growth and viability in a dose-dependent manner. Moreover, this drug produced oxidative stress in T. thermophila cells and expressions of antioxidant enzymes were significantly elevated at high koumine levels (p < 0.05). Koumine also caused significant levels of apoptosis (p < 0.05) and induced DNA damage in a dose-dependent manner. Mitophagic vacuoles were present in cells indicating induction of autophagy by this drug. Expression of ATG7, MTT2/4, CYP1 and HSP70 as well as the MAP kinase pathway gene MPK1 and MPK3 were significantly altered after exposed to koumine. This study represents a preliminary toxicological evaluation of koumine in the single celled eukaryote T. thermophila.

]]>