ResearchPad - reaction-time https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The effects of age and sex on cognitive impairment in schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS) study]]> https://www.researchpad.co/article/elastic_article_13860 Recently emerging evidence indicates accelerated age-related changes in the structure and function of the brain in schizophrenia, raising a question about its potential consequences on cognitive function. Using a large sample of schizophrenia patients and controls and a battery of tasks across multiple cognitive domains, we examined whether patients show accelerated age-related decline in cognition and whether an age-related effect differ between females and males. We utilized data of 1,415 schizophrenia patients and 1,062 healthy community collected by the second phase of the Consortium on the Genetics of Schizophrenia (COGS-2). A battery of cognitive tasks included the Letter-Number Span Task, two forms of the Continuous Performance Test, the California Verbal Learning Test, Second Edition, the Penn Emotion Identification Test and the Penn Facial Memory Test. The effect of age and gender on cognitive performance was examined with a general linear model. We observed age-related changes on most cognitive measures, which was similar between males and females. Compared to controls, patients showed greater deterioration in performance on attention/vigilance and greater slowness of processing social information with increasing age. However, controls showed greater age-related changes in working memory and verbal memory compared to patients. Age-related changes (η2p of 0.001 to .008) were much smaller than between-group differences (η2p of 0.005 to .037). This study found that patients showed continued decline of cognition on some domains but stable impairment or even less decline on other domains with increasing age. These findings indicate that age-related changes in cognition in schizophrenia are subtle and not uniform across multiple cognitive domains.

]]>
<![CDATA[Effective coupling of rapid freeze-quench to high-frequency electron paramagnetic resonance]]> https://www.researchpad.co/article/elastic_article_7690 We report an easy, efficient and reproducible way to prepare Rapid-Freeze-Quench samples in sub-millimeter capillaries and load these into the probe head of a 275 GHz Electron Paramagnetic Resonance spectrometer. Kinetic data obtained for the binding reaction of azide to myoglobin demonstrate the feasibility of the method for high-frequency EPR. Experiments on the same samples at 9.5 GHz show that only a single series of Rapid-Freeze-Quench samples is required for studies at multiple microwave frequencies.

]]>
<![CDATA[Emotional facial perception development in 7, 9 and 11 year-old children: The emergence of a silent eye-tracked emotional other-race effect]]> https://www.researchpad.co/article/elastic_article_7635 The present study examined emotional facial perception (happy and angry) in 7, 9 and 11-year-old children from Caucasian and multicultural environments with an offset task for two ethnic groups of faces (Asian and Caucasian). In this task, participants were required to respond to a dynamic facial expression video when they believed that the first emotion presented had disappeared. Moreover, using an eye-tracker, we evaluated the ocular behavior pattern used to process these different faces. The analyses of reaction times do not show an emotional other-race effect (i.e., a facility in discriminating own-race faces over to other-race ones) in Caucasian children for Caucasian vs. Asian faces through offset times, but an effect of emotional face appeared in the oldest children. Furthermore, an eye-tracked ocular emotion and race-effect relative to processing strategies is observed and evolves between age 7 and 11. This study strengthens the interest in advancing an eye-tracking study in developmental and emotional processing studies, showing that even a “silent” effect should be detected and shrewdly analyzed through an objective means.

]]>
<![CDATA[Structure and variability of delay activity in premotor cortex]]> https://www.researchpad.co/article/5c990204d5eed0c484b9749c

Voluntary movements are widely considered to be planned before they are executed. Recent studies have hypothesized that neural activity in motor cortex during preparation acts as an ‘initial condition’ which seeds the proceeding neural dynamics. Here, we studied these initial conditions in detail by investigating 1) the organization of neural states for different reaches and 2) the variance of these neural states from trial to trial. We examined population-level responses in macaque premotor cortex (PMd) during the preparatory stage of an instructed-delay center-out reaching task with dense target configurations. We found that after target onset the neural activity on single trials converges to neural states that have a clear low-dimensional structure which is organized by both the reach endpoint and maximum speed of the following reach. Further, we found that variability of the neural states during preparation resembles the spatial variability of reaches made in the absence of visual feedback: there is less variability in direction than distance in neural state space. We also used offline decoding to understand the implications of this neural population structure for brain-machine interfaces (BMIs). We found that decoding of angle between reaches is dependent on reach distance, while decoding of arc-length is independent. Thus, it might be more appropriate to quantify decoding performance for discrete BMIs by using arc-length between reach end-points rather than the angle between them. Lastly, we show that in contrast to the common notion that direction can better be decoded than distance, their decoding capabilities are comparable. These results provide new insights into the dynamical neural processes that underline motor control and can inform the design of BMIs.

]]>
<![CDATA[Boost your brain, while having a break! The effects of long-term cognitively engaging physical activity breaks on children’s executive functions and academic achievement]]> https://www.researchpad.co/article/5c897718d5eed0c4847d2449

Classroom-based physical activity (PA) is gaining attention in terms of its potential to enhance children’s cognitive functions, but it remains unclear as to which specific modality of PA affects cognitive functions most. The aim of the study was to examine the effects of qualitatively different PA breaks on children’s cognitive outcomes. Children (N = 142) aged between 7 and 9 years were allocated to a 20-week classroom-based PA program, with either high physical exertion and high cognitive engagement (combo group), high physical exertion and low cognitive engagement (aerobic group), or low physical exertion and high cognitive engagement (cognition group). Executive functions (updating, inhibition, shifting) and academic achievement (mathematics, spelling, reading) were measured pre- and post-intervention. Results showed that the combo group profited the most displaying enhanced shifting and mathematic performance. The cognition group profited only in terms of enhanced mathematic performance, whereas the aerobic group remained unaffected. These results suggest that the inclusion of cognitively engaging PA breaks seem to be a promising way to enhance school children’s cognitive functions.

]]>
<![CDATA[Laws of concatenated perception: Vision goes for novelty, decisions for perseverance]]> https://www.researchpad.co/article/5c88240cd5eed0c484639615

Every instant of perception depends on a cascade of brain processes calibrated to the history of sensory and decisional events. In the present work, we show that human visual perception is constantly shaped by two contrasting forces exerted by sensory adaptation and past decisions. In a series of experiments, we used multilevel modeling and cross-validation approaches to investigate the impact of previous stimuli and decisions on behavioral reports during adjustment and forced-choice tasks. Our results revealed that each perceptual report is permeated by opposite biases from a hierarchy of serially dependent processes: Low-level adaptation repels perception away from previous stimuli, whereas decisional traces attract perceptual reports toward the recent past. In this hierarchy of serial dependence, “continuity fields” arise from the inertia of decisional templates and not from low-level sensory processes. This finding is consistent with a Two-process model of serial dependence in which the persistence of readout weights in a decision unit compensates for sensory adaptation, leading to attractive biases in sequential perception. We propose a unified account of serial dependence in which functionally distinct mechanisms, operating at different stages, promote the differentiation and integration of visual information over time.

]]>
<![CDATA[Novel site-specific PEGylated L-asparaginase]]> https://www.researchpad.co/article/5c6c7587d5eed0c4843cfe5d

L-asparaginase (ASNase) from Escherichia coli is currently used in some countries in its PEGylated form (ONCASPAR, pegaspargase) to treat acute lymphoblastic leukemia (ALL). PEGylation refers to the covalent attachment of poly(ethylene) glycol to the protein drug and it not only reduces the immune system activation but also decreases degradation by plasmatic proteases. However, pegaspargase is randomly PEGylated and, consequently, with a high degree of polydispersity in its final formulation. In this work we developed a site-specific N-terminus PEGylation protocol for ASNase. The monoPEG-ASNase was purified by anionic followed by size exclusion chromatography to a final purity of 99%. The highest yield of monoPEG-ASNase of 42% was obtained by the protein reaction with methoxy polyethylene glycol-carboxymethyl N-hydroxysuccinimidyl ester (10kDa) in 100 mM PBS at pH 7.5 and PEG:ASNase ratio of 25:1. The monoPEG-ASNase was found to maintain enzymatic stability for more days than ASNase, also was resistant to the plasma proteases like asparaginyl endopeptidase and cathepsin B. Additionally, monoPEG-ASNase was found to be potent against leukemic cell lines (MOLT-4 and REH) in vitro like polyPEG-ASNase. monoPEG-ASNase demonstrates its potential as a novel option for ALL treatment, being an inventive novelty that maintains the benefits of the current enzyme and solves challenges.

]]>
<![CDATA[The impact of bilingualism on executive functions and working memory in young adults]]> https://www.researchpad.co/article/5c6dc9a6d5eed0c484529f7c

A bilingual advantage in a form of a better performance of bilinguals in tasks tapping into executive function abilities has been reported repeatedly in the literature. However, recent research defends that this advantage does not stem from bilingualism, but from uncontrolled factors or imperfectly matched samples. In this study we explored the potential impact of bilingualism on executive functioning abilities by testing large groups of young adult bilinguals and monolinguals in the tasks that were most extensively used when the advantages were reported. Importantly, the recently identified factors that could be disrupting the between groups comparisons were controlled for, and both groups were matched. We found no differences between groups in their performance. Additional bootstrapping analyses indicated that, when the bilingual advantage appeared, it very often co-occurred with unmatched socio-demographic factors. The evidence presented here indicates that the bilingual advantage might indeed be caused by spurious uncontrolled factors rather than bilingualism per se. Secondly, bilingualism has been argued to potentially affect working memory also. Therefore, we tested the same participants in both a forward and a backward version of a visual and an auditory working memory task. We found no differences between groups in either of the forward versions of the tasks, but bilinguals systematically outperformed monolinguals in the backward conditions. The results are analysed and interpreted taking into consideration different perspectives in the domain-specificity of the executive functions and working memory.

]]>
<![CDATA[Abstract social categories facilitate access to socially skewed words]]> https://www.researchpad.co/article/5c61e920d5eed0c48496f83a

Recent work has shown that listeners process words faster if said by a member of the group that typically uses the word. This paper further explores how the social distributions of words affect lexical access by exploring whether access is facilitated by invoking more abstract social categories. We conduct four experiments, all of which combine an Implicit Association Task with a Lexical Decision Task. Participants sorted real and nonsense words while at the same time sorting older and younger faces (exp. 1), male and female faces (exp. 2), stereotypically male and female objects (exp. 3), and framed and unframed objects, which were always stereotypically male or female (exp. 4). Across the experiments, lexical decision to socially skewed words is facilitated when the socially congruent category is sorted with the same hand. This suggests that the lexicon contains social detail from which individuals make social abstractions that can influence lexical access.

]]>
<![CDATA[The influence of prosocial priming on visual perspective taking and automatic imitation]]> https://www.researchpad.co/article/5c521859d5eed0c484797d2c

Imitation and perspective taking are core features of non-verbal social interactions. We imitate one another to signal a desire to affiliate and consider others’ points of view to better understand their perspective. Prior research suggests that a relationship exists between prosocial behaviour and imitation. For example, priming prosocial behaviours has been shown to increase imitative tendencies in automatic imitation tasks. Despite its importance during social interactions, far less is known about how perspective taking might relate to either prosociality or imitation. The current study investigates the relationship between automatic imitation and perspective taking by testing the extent to which these skills are similarly modulated by prosocial priming. Across all experimental groups, a surprising ceiling effect emerged in the perspective taking task (the Director’s Task), which prevented the investigation of prosocial priming on perspective taking. A comparison of other studies using the Director’s Task shows wide variability in accuracy scores across studies and is suggestive of low task reliability. In addition, despite using a high-power design, and contrary to three previous studies, no effect of prosocial prime on imitation was observed. Meta-analysing all studies to date suggests that the effects of prosocial primes on imitation are variable and could be small. The current study, therefore, offers caution when using the computerised Director’s Task as a measure of perspective taking with adult populations, as it shows high variability across studies and may suffer from a ceiling effect. In addition, the results question the size and robustness of prosocial priming effects on automatic imitation. More generally, by reporting null results we hope to minimise publication bias and by meta-analysing results as studies emerge and making data freely available, we hope to move towards a more cumulative science of social cognition.

]]>
<![CDATA[Volitional control of saccadic adaptation]]> https://www.researchpad.co/article/5c40f774d5eed0c4843861d6

Saccadic adaptation is assumed to be driven by an unconscious and automatic mechanism. We wondered if the adaptation process is accessible to volitional control, specifically whether any change in saccade gain can be inhibited. Participants were exposed to post-saccadic error by using the double-step paradigm in which a target is presented in a peripheral location and then stepped during the saccade to another location. In one condition, participants were instructed to follow the target step and look at the final target location. In the other condition they were instructed to inhibit the adjustment of saccade amplitude and look at the initial target location. We conducted two experiments, which differed in the size of the intra-saccadic target step. We found that when told to inhibit amplitude adjustment, gain change was close to zero for outward steps, but some adaptation remained for inward steps. Saccadic latency was not affected by the instruction type for inward steps, but when the target was stepped outward, latencies were longer in the inhibition than in the adaptation condition. The results show that volitional control can be exerted on saccadic adaptation. We suggest that volitional control affects the remapping of the target, thus having a larger impact on outward adaptation.

]]>
<![CDATA[A functional MRI investigation of crossmodal interference in an audiovisual Stroop task]]> https://www.researchpad.co/article/5c478c85d5eed0c484bd2d7f

The visual color-word Stroop task is widely used in clinical and research settings as a measure of cognitive control. Numerous neuroimaging studies have used color-word Stroop tasks to investigate the neural resources supporting cognitive control, but to our knowledge all have used unimodal (typically visual) Stroop paradigms. Thus, it is possible that this classic measure of cognitive control is not capturing the resources involved in multisensory cognitive control. The audiovisual integration and crossmodal correspondence literatures identify regions sensitive to congruency of auditory and visual stimuli, but it is unclear how these regions relate to the unimodal cognitive control literature. In this study we aimed to identify brain regions engaged by crossmodal cognitive control during an audiovisual color-word Stroop task, and how they relate to previous unimodal Stroop and audiovisual integration findings. First, we replicated previous behavioral audiovisual Stroop findings in an fMRI-adapted audiovisual Stroop paradigm: incongruent visual information increased reaction time towards an auditory stimulus and congruent visual information decreased reaction time. Second, we investigated the brain regions supporting cognitive control during an audiovisual color-word Stroop task using fMRI. Similar to unimodal cognitive control tasks, a left superior parietal region exhibited an interference effect of visual information on the auditory stimulus. This superior parietal region was also identified using a standard audiovisual integration localizing procedure, indicating that audiovisual integration resources are sensitive to cognitive control demands. Facilitation of the auditory stimulus by congruent visual information was found in posterior superior temporal cortex, including in the posterior STS which has been found to support audiovisual integration. The dorsal anterior cingulate cortex, often implicated in unimodal Stroop tasks, was not modulated by the audiovisual Stroop task. Overall the findings indicate that an audiovisual color-word Stroop task engages overlapping resources with audiovisual integration and overlapping but distinct resources compared to unimodal Stroop tasks.

]]>
<![CDATA[Scene complexity modulates degree of feedback activity during object detection in natural scenes]]> https://www.researchpad.co/article/5c33c3a1d5eed0c48459e504

Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity. Human participants performed an animal target detection task on natural scenes with low, medium or high complexity as determined by a computational model of low-level contrast statistics. Three converging lines of evidence indicate that feedback was selectively enhanced for high complexity scenes. First, functional magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for target objects in scenes with high, but not low or medium complexity. Second, event-related potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behavioral performance for high complexity scenes deteriorated when participants were pressed for time and thus less able to incorporate the feedback activity. Modeling of the reaction time distributions using drift diffusion revealed that object information accumulated more slowly for high complexity scenes, with evidence accumulation being coupled to trial-to-trial variation in the EEG feedback response. Together, these results suggest that while feed-forward activity may suffice to recognize isolated objects, the brain employs recurrent processing more adaptively in naturalistic settings, using minimal feedback for simple scenes and increasing feedback for complex scenes.

]]>
<![CDATA[Sex related biases for attending to object color versus object position are reflected in reaction time and accuracy]]> https://www.researchpad.co/article/5c3fa579d5eed0c484ca4cb1

Processing of visual features related to objects and space relations occurs within separate cortical streams that interact with selective attention. Such separation has implications for cognitive development because the perception of ‘what’ and ‘where’ provide a neural foundation for the development of aspects of higher cognition. Thus, a small attentional bias in early development for attending to one aspect over the other might influence subsequent higher cognitive processing in tasks involving object recognition and space relations. We examined 134 men and women for evidence of an inherent sex-related bias for attending to basic perceptual features related to object discrimination versus object position. Each stimulus consisted of a circle located in one of 9 positions within a surrounding frame. Circles were one of three shades of blue or red. These stimuli were used in a match-to-sample paradigm where participants were required to match circles on the basis of color or spatial position. The first stimulus appeared in the center of the screen for 400 msec and the matching stimulus subsequently appeared for 400 msec oriented 5 degrees to the right or left of center. The same stimuli were used to test the perception of color and position, with order of testing counterbalanced across participants. Results showed significantly longer reaction times in females compared with males, with better accuracy to discriminate color when that color was tested before position. Males showed better accuracy when object position was tested before color discrimination. A second experiment employed the same procedure, but enhanced selective attention by adding an endogenous cue that predicted the right or left location for the appearance of the matching stimulus. This manipulation greatly attenuated the sex differences in reaction time and accuracy compared to Experiment 1, suggesting that the sex-related attentional biases are strongly coupled to bottom-up processing. Overall, the sex related attentional biases toward processing object characteristics versus object position location suggest a differential manifestation of biased competition between the weighted systems of dorsal and ventral stream processing. Results are discussed with how a developmental bias in the processing objects versus space relations may contribute to adult cognitive sex differences in humans and animals.

]]>
<![CDATA[Attentional and working memory performance following alcohol and energy drink: A randomised, double-blind, placebo-controlled, factorial design laboratory study]]> https://www.researchpad.co/article/5c3fa5c9d5eed0c484ca8872

Alcohol mixed with energy drinks (AMED) studies have typically not shown antagonism of acute alcohol effects by energy drink (ED), particularly over relatively short time frames. This study investigated the effects of alcohol, ED, and AMED on attentional and working memory processes over a 3 h period. Twenty-four young adults took part in a randomised, double-blind, placebo-controlled, factorial, 4-arm study. They were administered 0.6g/kg alcohol and 250 ml ED (containing 80 mg caffeine), and matching placebos alone and in combination. A battery of attentional and working memory measures was completed at baseline then 45, 90 and 180 min post-treatment. Alcohol produced a characteristic shift in speed/accuracy trade-off, having little effect on reaction times while increasing errors on all attentional measures (4-choice Reaction Time, Number Pairs and Visual Search), as well as a composite Attentional error score and one working memory task (Serial Sevens). ED alone improved two working memory measures (Memory Scanning accuracy and Digit–Symbol reaction times) and improved speed of responding on a composite Working Memory score. There was no consistent pattern of AMED vs. alcohol effects; AMED produced more errors than alcohol alone on one attentional measure (Visual Search errors) at 45 min only whereas AMED resulted in fewer errors on the Serial Sevens task at 90 min and better Digit-Symbol accuracy and reaction time at 45 min. Alcohol consumption increases error rate across several attentional and working memory processes. Mutual antagonism between alcohol and ED showed no consistent pattern and likely reflects a complex interaction between caffeine and alcohol levels, phase of the blood alcohol limb, task domain and cognitive load.

]]>
<![CDATA[Human scalp evoked potentials related to the fusion between a sound source and its simulated reflection]]> https://www.researchpad.co/article/5c3fa5ced5eed0c484ca8cc3

The auditory system needs to fuse the direct wave (lead) from a sound source and its time-delayed reflections (lag) to achieve a single sound image perception. This lead-lag fusion plays crucial roles in auditory processing in reverberant environments. Here, we investigated neural correlates of the lead-lag fusion by tracking human cortical potentials evoked by a break in the correlation (BIC) between the lead and lag when the time delay between the two was 0, 2, or 4 ms. The BIC evoked a scalp potential consisting of an N1 and a P2 component. Both components were modulated by the delay. The effects of the delay on the amplitude of the two components were similar, an increase of the delay resulting in a decrease of the amplitude. In contrast, the delay differently modulated the latency of the two components, an increase of the delay resulting in an increase of the P2 latency but not an increase of the N1 latency. Similar to the P2 latency, the reaction time for subjective detection of the BIC also increased with the delay. These findings suggest that both the N1 and the P2 evoked by the BIC are neural correlates of the lead-lag fusion and that, relative to the N1, the P2 may be more closely related to listeners’ perception of the fusion. Our study thus provides a neurophysiological and objective approach for investigating the fusion between the direct sound wave from a sound source and its reflections.

]]>
<![CDATA[Social responses of travelling finless porpoises to boat traffic risk in Misumi West Port, Ariake Sound, Japan]]> https://www.researchpad.co/article/5c3667b2d5eed0c4841a60e7

Anthropogenic effects have created various risks for wild animals. Boat traffic is one of the most fatal risks for marine mammals. Individual behavioral responses of cetaceans, including diving behavior such as changing swimming direction and lengthing inter-breath interval, to passing boats is relatively well known; however, the social function of cetacean responses to boat traffic in a natural setting remains poorly understood. We focused on describing the behavioral responses of single and aggregated finless porpoises to boats passing at Misumi West Port, Ariake Sound, Japan, by using a drone characterized with a high-precision bird’s-eye angle. During the study period, we collected 25 episodes of finless porpoise responses to boats passing by. A mean (± SEM) of 5.1 ± 1.0 individuals were observed for each episode. The primary response to passing boats was avoidance by dive, which implies boat traffic is a substantial disturbance to finless porpoises that travel along the seawater surface daily. The diving duration decreased significantly with an increase in the number of aggregated individuals. The diving and floating reaction times were 10.9 ± 2.3 s and 18.7 ± 5.0 s, respectively. There was no significant difference between the reaction times indicating that each individual was motivated to keep the group cohesion consistent when floating even after the risk had dissolved, which is comparable to the behavior of porpoises that dive when riskier conditions are present, such as when a boat approaches an aggregation. Our findings provide new insights on the sociality of finless porpoises even though there were limitations, like an inability to identify a specific individual. The drone enabled us to observe the social behavior of finless porpoises and other cetaceans at an unprecedented resolution, which may lead to a better understanding of the evolutionary diversity of intelligence and sociality and the bridge to human evolution.

]]>
<![CDATA[Putting out the blaze: The neural mechanisms underlying sexual inhibition]]> https://www.researchpad.co/article/5c3667e6d5eed0c4841a686c

The successful inhibition of sexual thoughts, desires, and behaviors represents an essential ability for adequate functioning in our daily life. Evidence derived from lesion studies indicates a link between sexual inhibition and the general ability for behavioral and cognitive control. This is further supported by the high comorbidity of sexual compulsivity with other inhibition-related disorders. Here, we aimed at investigating whether sexual and general inhibition recruit overlapping or distinct neural correlates in the brain. Furthermore, we investigated the specificity of two different kinds of sexual inhibition: inhibition of sexually driven motor responses and inhibition of sexual incoming information. To this end, 22 healthy participants underwent functional Magnetic Resonance Imaging (fMRI) while performing a task requiring general response inhibition (Go/No-go), as well as cognitive and motivational sexual inhibition (Negative Affective Priming and Approach-Avoidance task). Our within-subject within-session design enabled the direct statistical comparison between general and sexual inhibitory mechanisms. The general inhibition task recruited mainly prefrontal and insular regions, replicating previous findings. In contrast, the two types of sexual inhibition activated both common and distinct neural networks. Whereas cognitive sexual inhibition engaged the inferior frontal gyrus, the orbitofrontal cortex and the fusiform gyrus, motivational sexual inhibition was characterized by a hypoactivation in the anterolateral prefrontal cortex. Both types of sexual inhibition recruited the inferior frontal gyrus and the inferotemporal cortex. However, the activity of the inferior frontal gyrus did not correlate with behavioral inhibitory scores. These results support the hypothesis of inhibitory processing being an emergent property of a functional network.

]]>
<![CDATA[The relationship between behavioral language laterality, face laterality and language performance in left-handers]]> https://www.researchpad.co/article/5c26976bd5eed0c48470f7a6

Left-handers provide unique information about the relationship between cognitive functions because of their larger variability in hemispheric dominance. This study presents the laterality distribution of, correlations between and test-retest reliability of behavioral lateralized language tasks (speech production, reading and speech perception), face recognition tasks, handedness measures and language performance tests based on data from 98 left-handers. The results show that a behavioral test battery leads to percentages of (a)typical dominance that are similar to those found in neuropsychological studies even though the incidence of clear atypical lateralization (about 20%) may be overestimated at the group level. Significant correlations were found between the language tasks for both reaction time and accuracy lateralization indices. The degree of language laterality could however not be linked to face laterality, handedness or language performance. Finally, individuals were classified less consistently than expected as being typical, bilateral or atypical across all tasks. This may be due to the often good (speech production and perception tasks) but sometimes weak (reading and face tasks) test-retest reliabilities. The lack of highly reliable and valid test protocols for functions unrelated to speech remains one of the largest impediments for individual analysis and cross-task investigations in laterality research.

]]>
<![CDATA[Effect of language proficiency on proactive occulo-motor control among bilinguals]]> https://www.researchpad.co/article/5c1ab870d5eed0c4840280de

We examined the effect of language proficiency on the status and dynamics of proactive inhibitory control in an occulo-motor cued go-no-go task. The first experiment was designed to demonstrate the effect of second language proficiency on proactive inhibitory cost and adjustments in control by evaluating previous trial effects. This was achieved by introducing uncertainty about the upcoming event (go or no-go stimulus). High- and low- proficiency Hindi-English bilingual adults participated in the study. Saccadic latencies and errors were taken as the measures of performance. The results demonstrate a significantly lower proactive inhibitory cost and better up-regulation of proactive control under uncertainty among high- proficiency bilinguals. An analysis based on previous trial effects suggests that high- proficiency bilinguals were found to be better at releasing inhibition and adjustments in control, in an ongoing response activity in the case of uncertainty. To further understand the dynamics of proactive inhibitory control as a function of proficiency, the second experiment was designed to test the default versus temporary state hypothesis of proactive inhibitory control. Certain manipulations were introduced in the cued go-no-go task in order to make the upcoming go or no-go trial difficult to predict, which increased the demands on the implementation and maintenance of proactive control. High- proficiency bilinguals were found to rely on a default state of proactive inhibitory control whereas low- proficiency bilinguals were found to rely on temporary/transient proactive inhibition. Language proficiency, as one of the measures of bilingualism, was found to influence proactive inhibitory control and appears to modulate the dynamics of proactive inhibitory control.

]]>