ResearchPad - review-articles https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Current State of Knowledge About SARS-CoV-2 and COVID-19 Disease in Pregnant Women]]> https://www.researchpad.co/article/elastic_article_11860 During any epidemic of infectious diseases, pregnant women constitute an extremely sensitive group due to altered physiology and immune functions, and thus altered susceptibility to infection. With regard to the management of pregnant COVID-19 patients, in addition to the treatment of the infection itself, which is not that different from generally accepted principles, it is interesting to consider which obstetric procedures should be used to minimize the adverse effects on mother and child. Questions arise concerning the continuation of pregnancy, how to terminate the pregnancy, the possibility of virus transmission through the placenta, isolation of the newborn after birth, and breastfeeding.

The aim of this study was to review the current state of knowledge about SARS-CoV-2 infection and COVID-19 disease in pregnant women. Because the epidemic began in China, most of the available literature comes from studies conducted there. The studies used to prepare this review article are the first non-randomized studies containing small groups of examined women. They do not provide clear indications, but show that in an epidemic situation, special care should be taken in pregnancy management, making decisions about termination of pregnancy, and handling of the newborn baby to minimize the risk of subsequent health consequences.

Further analysis is needed on the incidence of COVID-19 among pregnant women and its consequences. This will allow us to develop recommendations on how to deal with patients in the future in case of repeated epidemic emergencies.

]]>
<![CDATA[Bone marrow niche dysregulation in myeloproliferative neoplasms]]> https://www.researchpad.co/article/elastic_article_11029 The bone marrow niche is a complex and dynamic structure composed of a multitude of cell types which functionally create an interactive network facilitating hematopoietic stem cell development and maintenance. Its specific role in the pathogenesis, response to therapy, and transformation of myeloproliferative neoplasms has only recently been explored. Niche functionality is likely affected not only by the genomic background of the myeloproliferative neoplasm-associated mutated hematopoietic stem cells, but also by disease-associated ‘chronic inflammation’, and subsequent adaptive and innate immune responses. ‘Cross-talk’ between mutated hematopoietic stem cells and multiple niche components may contribute to propagating disease progression and mediating drug resistance. In this timely article, we will review current knowledge surrounding the deregulated bone marrow niche in myeloproliferative neoplasms and suggest how this may be targeted, either directly or indirectly, potentially influencing therapeutic choices both now and in the future.

]]>
<![CDATA[The never ending success story of tranexamic acid in acquired bleeding]]> https://www.researchpad.co/article/elastic_article_11009 Tranexamic acid (TXA) is an anti-fibrinolytic agent that acts by inhibiting plasminogen activation and fibrinolysis. Although its first clinical use dates back more than 50 years, this hemostatic agent is still the object of intense clinical and developmental research. In particular, renewed interest in TXA has arisen following evidence that it has a beneficial effect in reducing blood loss in a variety of medical and surgical conditions at increased risk of bleeding. Given this characteristic, TXA is currently considered a mainstay of Patient Blood Management programs aimed at reducing patients’ exposure to allogeneic blood transfusion. Importantly, recent large randomized controlled trials have consistently documented that the use of TXA confers a survival advantage in a number of globally critical clinical conditions associated with acute bleeding, including traumatic injury and post-partum hemorrhage, without increasing the thromboembolic risk.

]]>
<![CDATA[MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis]]> https://www.researchpad.co/article/elastic_article_10897 Ribosome biogenesis is the fine-tuned, essential process that generates mature ribosomal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of ribosome biogenesis continue to be discovered in higher eukaryotes. While many known regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory layer controlling ribosome production. Here, we summarize work uncovering non-coding RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or lncRNAs are involved in phenotypic or pathological disease outcomes caused by impaired ribosome production, as in the ribosomopathies, or by increased ribosome production, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribosome biogenesis will be discovered, which will be followed by an effort to establish connections between disease pathologies and the molecular mechanisms of this additional layer of ribosome biogenesis control.

]]>
<![CDATA[From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches]]> https://www.researchpad.co/article/elastic_article_9221 A healthy body activates the immune response to target invading pathogens (i.e. viruses, bacteria, fungi, and parasites) and avoid further systemic infection. The activation of immunological mechanisms includes several components of the immune system, such as innate and acquired immunity. Once any component of the immune response to infections is aberrantly altered or dysregulated, resulting in a failure to clear infection, sepsis will develop through a pro-inflammatory immunological mechanism. Furthermore, the severe inflammatory responses induced by sepsis also increase vascular permeability, leading to acute pulmonary edema and resulting in acute respiratory distress syndrome (ARDS). Apparently, potential for improvement exists in the management of the transition from sepsis to ARDS; thus, this article presents an exhaustive review that highlights the previously unrecognized relationship between sepsis and ARDS and suggests a direction for future therapeutic developments, including plasma and genetic pre-diagnostic strategies and interference with proinflammatory signaling.

]]>
<![CDATA[Cell Atlas technologies and insights into tissue architecture]]> https://www.researchpad.co/article/elastic_article_9194 Since Robert Hooke first described the existence of ‘cells’ in 1665, scientists have sought to identify and further characterise these fundamental units of life. While our understanding of cell location, morphology and function has expanded greatly; our understanding of cell types and states at the molecular level, and how these function within tissue architecture, is still limited. A greater understanding of our cells could revolutionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to identify all cell types at the molecular level, including their physical locations, and to make this reference data openly available to the scientific community. This is made possible by a recent technology revolution: both in single-cell molecular profiling, particularly single-cell RNA sequencing, and in spatially resolved methods for assessing gene and protein expression. Here, we review available and upcoming atlasing technologies, the biological insights gained to date and the promise of this field for the future.

]]>
<![CDATA[Recent advances in understanding prodrug transport through the SLC15 family of proton-coupled transporters]]> https://www.researchpad.co/article/elastic_article_9192 Solute carrier (SLC) transporters play important roles in regulating the movement of small molecules and ions across cellular membranes. In mammals, they play an important role in regulating the uptake of nutrients and vitamins from the diet, and in controlling the distribution of their metabolic intermediates within the cell. Several SLC families also play an important role in drug transport and strategies are being developed to hijack SLC transporters to control and regulate drug transport within the body. Through the addition of amino acid and peptide moieties several novel antiviral and anticancer agents have been developed that hijack the proton-coupled oligopeptide transporters, PepT1 (SCL15A1) and PepT2 (SLC15A2), for improved intestinal absorption and renal retention in the body. A major goal is to understand the rationale behind these successes and expand the library of prodrug molecules that utilise SLC transporters. Recent co-crystal structures of prokaryotic homologues of the human PepT1 and PepT2 transporters have shed important new insights into the mechanism of prodrug recognition. Here, I will review recent developments in our understanding of ligand recognition and binding promiscuity within the SLC15 family, and discuss current models for prodrug recognition.

]]>
<![CDATA[The road to the structure of the mitochondrial respiratory chain supercomplex]]> https://www.researchpad.co/article/elastic_article_9190 The four complexes of the mitochondrial respiratory chain are critical for ATP production in most eukaryotic cells. Structural characterisation of these complexes has been critical for understanding the mechanisms underpinning their function. The three proton-pumping complexes, Complexes I, III and IV associate to form stable supercomplexes or respirasomes, the most abundant form containing 80 subunits in mammals. Multiple functions have been proposed for the supercomplexes, including enhancing the diffusion of electron carriers, providing stability for the complexes and protection against reactive oxygen species. Although high-resolution structures for Complexes III and IV were determined by X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessitated advances in sample preparation and the development of cryo-electron microscopy techniques. We now enjoy structures for these beautiful complexes isolated from multiple organisms and in multiple states and together they provide important insights into respiratory chain function and the role of the supercomplex. While we as non-structural biologists use these structures for interpreting our own functional data, we need to remind ourselves that they stand on the shoulders of a large body of previous structural studies, many of which are still appropriate for use in understanding our results. In this mini-review, we discuss the history of respiratory chain structural biology studies leading to the structures of the mammalian supercomplexes and beyond.

]]>
<![CDATA[Post-translational modifications and stress adaptation: the paradigm of FKBP51]]> https://www.researchpad.co/article/elastic_article_9189 Adaptation to stress is a fundamental requirement to cope with changing environmental conditions that pose a threat to the homeostasis of cells and organisms. Post-translational modifications (PTMs) of proteins represent a possibility to quickly produce proteins with new features demanding relatively little cellular resources. FK506 binding protein (FKBP) 51 is a pivotal stress protein that is involved in the regulation of several executers of PTMs. This mini-review discusses the role of FKBP51 in the function of proteins responsible for setting the phosphorylation, ubiquitination and lipidation of other proteins. Examples include the kinases Akt1, CDK5 and GSK3β, the phosphatases calcineurin, PP2A and PHLPP, and the ubiquitin E3-ligase SKP2. The impact of FKBP51 on PTMs of signal transduction proteins significantly extends the functional versatility of this protein. As a stress-induced protein, FKBP51 uses re-setting of PTMs to relay the effect of stress on various signaling pathways.

]]>
<![CDATA[Bacterial phenotypic heterogeneity in DNA repair and mutagenesis]]> https://www.researchpad.co/article/elastic_article_9188 Genetically identical cells frequently exhibit striking heterogeneity in various phenotypic traits such as their morphology, growth rate, or gene expression. Such non-genetic diversity can help clonal bacterial populations overcome transient environmental challenges without compromising genome stability, while genetic change is required for long-term heritable adaptation. At the heart of the balance between genome stability and plasticity are the DNA repair pathways that shield DNA from lesions and reverse errors arising from the imperfect DNA replication machinery. In principle, phenotypic heterogeneity in the expression and activity of DNA repair pathways can modulate mutation rates in single cells and thus be a source of heritable genetic diversity, effectively reversing the genotype-to-phenotype dogma. Long-standing evidence for mutation rate heterogeneity comes from genetics experiments on cell populations, which are now complemented by direct measurements on individual living cells. These measurements are increasingly performed using fluorescence microscopy with a temporal and spatial resolution that enables localising, tracking, and counting proteins with single-molecule sensitivity. In this review, we discuss which molecular processes lead to phenotypic heterogeneity in DNA repair and consider the potential consequences on genome stability and dynamics in bacteria. We further inspect these concepts in the context of DNA damage and mutation induced by antibiotics.

]]>
<![CDATA[Redox signalling and ageing: insights from <i>Drosophila</i>]]> https://www.researchpad.co/article/elastic_article_9185 Ageing and age-related diseases are major challenges for the social, economic and healthcare systems of our society. Amongst many theories, reactive oxygen species (ROS) have been implicated as a driver of the ageing process. As by-products of aerobic metabolism, ROS are able to randomly oxidise macromolecules, causing intracellular damage that accumulates over time and ultimately leads to dysfunction and cell death. However, the genetic overexpression of enzymes involved in the detoxification of ROS or treatment with antioxidants did not generally extend lifespan, prompting a re-evaluation of the causal role for ROS in ageing. More recently, ROS have emerged as key players in normal cellular signalling by oxidising redox-sensitive cysteine residues within proteins. Therefore, while high levels of ROS may be harmful and induce oxidative stress, low levels of ROS may actually be beneficial as mediators of redox signalling. In this context, enhancing ROS production in model organisms can extend lifespan, with biological effects dependent on the site, levels, and specific species of ROS. In this review, we examine the role of ROS in ageing, with a particular focus on the importance of the fruit fly Drosophila as a powerful model system to study redox processes in vivo.

]]>
<![CDATA[Cross-talk between redox signalling and protein aggregation]]> https://www.researchpad.co/article/elastic_article_9183 It is well established that both an increase in reactive oxygen species (ROS: i.e. O2•−, H2O2 and OH), as well as protein aggregation, accompany ageing and proteinopathies such as Parkinson's and Alzheimer's disease. However, it is far from clear whether there is a causal relation between the two. This review describes how protein aggregation can be affected both by redox signalling (downstream of H2O2), as well as by ROS-induced damage, and aims to give an overview of the current knowledge of how redox signalling affects protein aggregation and vice versa. Redox signalling has been shown to play roles in almost every step of protein aggregation and amyloid formation, from aggregation initiation to the rapid oligomerization of large amyloids, which tend to be less toxic than oligomeric prefibrillar aggregates. We explore the hypothesis that age-associated elevated ROS production could be part of a redox signalling-dependent-stress response in an attempt to curb protein aggregation and minimize toxicity.

]]>
<![CDATA[The role of SUMOylation during development]]> https://www.researchpad.co/article/elastic_article_9182 During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.

]]>
<![CDATA[Cell signaling and cytomegalovirus reactivation: what do Src family kinases have to do with it?]]> https://www.researchpad.co/article/elastic_article_9180 Primary infection with human cytomegalovirus (HCMV) is usually asymptomatic and leads to the establishment of lifelong latent infection. A major site of latency are the CD34+ hematopoietic progenitor cells. Importantly, normal cellular differentiation of CD34+ cells to a macrophage or dendritic cell phenotype is concomitant with viral reactivation. Molecular studies of HCMV latency have shown that the latent viral genome is associated with histone proteins and that specific post-translational modifications of these histones correlates with the transcriptional activity of the genome arguing that expression of key viral genes that dictate latency and reactivation are subject to the rules of the histone code hypothesis postulated for the regulation of eukaryotic gene expression. Finally, many studies now point to a key role for multiple signaling pathways to provide the cue for HCMV reactivation. The challenge now is to understand the complex interplay between cell identity, transcriptional regulation and cell signaling that occurs to promote reactivation and, additionally, how HCMV may further manipulate these events to support reactivation. Understanding how HCMV utilizes these pathways to drive HCMV reactivation will provide new insight into the mechanisms that govern viral and host gene expression and, potentially, illuminate new, host-directed, therapeutic opportunities to support our attempts to control this important medical pathogen of immune-compromised individuals.

]]>
<![CDATA[Cytotoxicity of snake venom enzymatic toxins: phospholipase A<sub>2</sub> and <span style="font-variant: all-small-caps">l</span>-amino acid oxidase]]> https://www.researchpad.co/article/elastic_article_9179 The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.

]]>
<![CDATA[Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action]]> https://www.researchpad.co/article/elastic_article_9176 Identified five decades ago amongst the most abundant cellular RNAs, small nucleolar RNAs (snoRNAs) were initially described as serving as guides for the methylation and pseudouridylation of ribosomal RNA through direct base pairing. In recent years, however, increasingly powerful high-throughput genomic approaches and strategies have led to the discovery of many new members of the family and surprising diversity in snoRNA functionality and mechanisms of action. SnoRNAs are now known to target RNAs of many biotypes for a wider range of modifications, interact with diverse binding partners, compete with other binders for functional interactions, recruit diverse players to targets and affect protein function and accessibility through direct interaction. This mini-review presents the continuing characterization of the snoRNome through the identification of new snoRNA members and the discovery of their mechanisms of action, revealing a highly versatile noncoding family playing central regulatory roles and connecting the main cellular processes.

]]>
<![CDATA[Exaggerated mitophagy: a weapon of striatal destruction in the brain?]]> https://www.researchpad.co/article/elastic_article_9174 Mechanisms responsible for neuronal vulnerability in the brain remain unclear. Striatal neurons are preferentially damaged by 3-nitropropionic acid (3-NP), a mitochondrial complex-II inhibitor, causing striatal damage reminiscent of Huntington's disease (HD), but the mechanisms of the selectivity are not as well understood. We have discovered that Rhes, a protein enriched in the striatum, removes mitochondria via the mitophagy process. The process becomes intensified in the presence of 3-NP, thereby eliminating most of the mitochondria from the striatum. We put forward the hypothesis that Rhes acts as a ‘mitophagy ligand' in the brain and promotes mitophagy via NIX, a mitophagy receptor. Since Rhes interacts and promotes toxicity in association with mutant huntingtin (mHTT), the genetic cause of HD, it is tempting to speculate on whether the exaggerated mitophagy may be a contributing factor to the striatal lesion found in HD. Thus, Rhes-mediated exaggerated mitophagy may act as a weapon of striatal destruction in the brain.

]]>
<![CDATA[Small molecules that target the ubiquitin system]]> https://www.researchpad.co/article/elastic_article_9166 Eukaryotic life depends upon the interplay between vast networks of signaling pathways composed of upwards of 109–1010 proteins per cell. The integrity and normal operation of the cell requires that these proteins act in a precise spatial and temporal manner. The ubiquitin system is absolutely central to this process and perturbation of its function contributes directly to the onset and progression of a wide variety of diseases, including cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infectious diseases, and muscle dystrophies. Whilst the individual components and the overall architecture of the ubiquitin system have been delineated in some detail, how ubiquitination might be successfully targeted, or harnessed, to develop novel therapeutic approaches to the treatment of disease, currently remains relatively poorly understood. In this review, we will provide an overview of the current status of selected small molecule ubiquitin system inhibitors. We will further discuss the unique challenges of targeting this ubiquitous and highly complex machinery, and explore and highlight potential ways in which these challenges might be met.

]]>
<![CDATA[MRI and PET/MRI in hematologic malignancies]]> https://www.researchpad.co/article/elastic_article_8304 The role of MRI differs considerably between the three main groups of hematological malignancies: lymphoma, leukemia, and myeloma. In myeloma, whole‐body MRI (WB‐MRI) is recognized as a highly sensitive test for the assessment of myeloma, and is also endorsed by clinical guidelines, especially for detection and staging. In lymphoma, WB‐MRI is presently not recommended, and merely serves as an alternative technique to the current standard imaging test, [18F]FDG‐PET/CT, especially in pediatric patients. Even for lymphomas with variable FDG avidity, such as extranodal mucosa‐associated lymphoid tissue lymphoma (MALT), contrast‐enhanced computed tomography (CT), but not WB‐MRI, is presently recommended, despite the high sensitivity of diffusion‐weighted MRI and its ability to capture treatment response that has been reported in the literature. In leukemia, neither MRI nor any other cross‐sectional imaging test (including positron emission tomography [PET]) is currently recommended outside of clinical trials. This review article discusses current clinical applications as well as the main research topics for MRI, as well as PET/MRI, in the field of hematological malignancies, with a focus on functional MRI techniques such as diffusion‐weighted imaging and dynamic contrast‐enhanced MRI, on the one hand, and novel, non‐FDG PET imaging probes such as the CXCR4 radiotracer [68Ga]Ga‐Pentixafor and the amino acid radiotracer [11C]methionine, on the other hand.

Level of Evidence: 5

Technical Efficacy Stage: 3

J. Magn. Reson. Imaging 2020;51:1325–1335.

]]>
<![CDATA[The developing immune network in human prenatal skin]]> https://www.researchpad.co/article/elastic_article_7954 The immune system in skin is established early during development. Throughout development it continues to expand and diversify.

]]>