ResearchPad - rift-valley-fever-virus https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Selected wetland soil properties correlate to Rift Valley fever livestock mortalities reported in 2009-10 in central South Africa]]> https://www.researchpad.co/article/elastic_article_15754 Outbreaks of Rift Valley fever have devastating impacts on ruminants, humans, as well as on regional and national economies. Although numerous studies on the impact and outbreak of Rift Valley fever exist, relatively little is known about the role of environmental factors, especially soil, on the aestivation of the virus. This study thus selected 22 sites for study in central South Africa, known to be the recurrent epicenter of widespread Rift Valley fever outbreaks in Southern Africa. Soils were described, sampled and analyzed in detail at each site. Of all the soil variables analyzed for, only eight (cation exchange capacity, exchangeable Ca2+, exchangeable K+, exchangeable Mg2+, soluble Ca2+, medium sand, As, and Br) were statistically identified to be potential indicators of sites with reported Rift Valley fever mortalities, as reported for the 2009–2010 Rift Valley fever outbreak. Four soil characteristics (exchangeable K+, exchangeable Mg2+, medium sand, and Br) were subsequently included in a discriminant function that could potentially be used to predict sites that had reported Rift Valley fever-associated mortalities in livestock. This study therefore constitutes an initial attempt to predict sites prone to Rift Valley fever livestock mortality from soil properties and thus serves as a basis for broader research on the interaction between soil, mosquitoes and Rift Valley fever virus. Future research should include other environmental components such as vegetation, climate, and water properties as well as correlating soil properties with floodwater Aedes spp. abundance and Rift Valley fever virus prevalence.

]]>
<![CDATA[Individual-based network model for Rift Valley fever in Kabale District, Uganda]]> https://www.researchpad.co/article/5c8823c9d5eed0c484638ffb

Rift Valley fever (RVF) is a zoonotic disease, that causes significant morbidity and mortality among ungulate livestock and humans in endemic regions. In East Africa, the causative agent of the disease is Rift Valley fever virus (RVFV) which is primarily transmitted by multiple mosquito species in Aedes and Mansonia genera during both epizootic and enzootic periods in a complex transmission cycle largely driven by environmental and climatic factors. However, recent RVFV activity in Uganda demonstrated the capability of the virus to spread into new regions through livestock movements, and underscored the need to develop effective mitigation strategies to reduce transmission and prevent spread among cattle populations. We simulated RVFV transmission among cows in 22 different locations of the Kabale District in Uganda using real world livestock data in a network-based model. This model considered livestock as a spatially explicit factor in different locations subjected to specific vector and environmental factors, and was configured to investigate and quantitatively evaluate the relative impacts of mosquito control, livestock movement, and diversity in cattle populations on the spread of the RVF epizootic. We concluded that cattle movement should be restricted for periods of high mosquito abundance to control epizootic spreading among locations during an RVF outbreak. Importantly, simulation results also showed that cattle populations with heterogeneous genetic diversity as crossbreeds were less susceptible to infection compared to homogenous cattle populations.

]]>
<![CDATA[Vector competence of biting midges and mosquitoes for Shuni virus]]> https://www.researchpad.co/article/5c6c75dfd5eed0c4843d037a

Background

Shuni virus (SHUV) is an orthobunyavirus that belongs to the Simbu serogroup. SHUV was isolated from diverse species of domesticated animals and wildlife, and is associated with neurological disease, abortions, and congenital malformations. Recently, SHUV caused outbreaks among ruminants in Israel, representing the first incursions outside the African continent. The isolation of SHUV from a febrile child in Nigeria and seroprevalence among veterinarians in South Africa suggests that the virus may have zoonotic potential as well. The high pathogenicity, extremely broad tropism, potential transmission via both biting midges and mosquitoes, and zoonotic features of SHUV require further investigation. This is important to accurately determine the risk for animal and human health, and to facilitate preparations for potential epidemics. To gain first insight into the potential involvement of biting midges and mosquitoes in SHUV transmission we have investigated the ability of SHUV to infect two species of laboratory-colonised biting midges and two species of mosquitoes.

Methodology/Principal findings

Culicoides nubeculosus, C. sonorensis, Culex pipiens pipiens, and Aedes aegypti were orally exposed to SHUV by providing an infectious blood meal. Biting midges showed high infection rates of approximately 40%-60%, whereas infection rates of mosquitoes were only 0–2%. Moreover, successful dissemination in both species of biting midges and no evidence for transmission by orally exposed mosquitoes was found.

Conclusions/Significance

The results of this study suggest that different species of Culicoides midges are efficient in SHUV transmission, while the involvement of mosquitoes has not been supported.

]]>
<![CDATA[Study on causes of fever in primary healthcare center uncovers pathogens of public health concern in Madagascar]]> https://www.researchpad.co/article/5b60074e463d7e39c5526201

Background

The increasing use of malaria diagnostic tests reveals a growing proportion of patients with fever but no malaria. Clinicians and health care workers in low-income countries have few tests to diagnose causes of fever other than malaria although several diseases share common symptoms. We propose here to assess etiologies of fever in Madagascar to ultimately improve management of febrile cases.

Methodology

Consenting febrile outpatients aged 6 months and older were recruited in 21 selected sentinel sites throughout Madagascar from April 2014 to September 2015. Standard clinical examinations were performed, and blood and upper respiratory specimens were taken for rapid diagnostic tests and molecular assays for 36 pathogens of interest for Madagascar in terms of public health, regardless of clinical status.

Principal findings

A total of 682 febrile patients were enrolled. We detected at least one pathogen in 40.5% (276/682) of patients and 6.2% (42/682) with co-infections. Among all tested patients, 26.5% (181/682) had at least one viral infection, 17.0% (116/682) had malaria and 1.0% (7/682) presented a bacterial or a mycobacterial infection. None or very few of the highly prevalent infectious agents in Eastern Africa and Asia were detected in this study, such as zoonotic bacteria or arboviral infections.

Conclusions

These results raise questions about etiologies of fever in Malagasy communities. Nevertheless, we noted that viral infections and malaria still represent a significant proportion of causes of febrile illnesses. Interestingly our study allowed the detection of pathogens of public health interest such as Rift Valley Fever Virus but also the first case of laboratory-confirmed leptospirosis infection in Madagascar.

]]>
<![CDATA[Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human primates]]> https://www.researchpad.co/article/5afd6995463d7e7322194032

Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that has caused large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Currently, no licensed vaccine or therapeutics exists to treat this potentially deadly disease. The explosive nature of RVFV outbreaks and the severe consequences of its accidental or intentional introduction into RVFV-free areas provide the impetus for the development of novel vaccine candidates for use in both livestock and humans. Rationally designed vaccine candidates using reverse genetics have been used to develop deletion mutants of two known RVFV virulence factors, the NSs and NSm genes. These recombinant viruses were demonstrated to be protective and immunogenic in rats, mice, and sheep, without producing clinical illness in these animals. Here, we expand upon those findings and evaluate the single deletion mutant (ΔNSs rRVFV) and double deletion mutant (ΔNSs-ΔNSm rRVFV) vaccine candidates in the common marmoset (Callithrix jacchus), a non-human primate (NHP) model resembling severe human RVF disease. We demonstrate that both the ΔNSs and ΔNSs-ΔNSm rRVFV vaccine candidates were found to be safe and immunogenic in the current study. The vaccinated animals received a single dose of vaccine that led to the development of a robust antibody response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated marmosets. All vaccinated animals that were subsequently challenged with RVFV were protected against viremia and liver disease. In summary, our results provide the basis for further development of the ΔNSs and ΔNSs-ΔNSm rRVFV as safe and effective human RVFV vaccines for this significant public health threat.

]]>
<![CDATA[siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection]]> https://www.researchpad.co/article/5989da74ab0ee8fa60b9624a

Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1–PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling.

]]>
<![CDATA[Development and Assessment of a Geographic Knowledge-Based Model for Mapping Suitable Areas for Rift Valley Fever Transmission in Eastern Africa]]> https://www.researchpad.co/article/5989d9f7ab0ee8fa60b7099a

Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review. A numerical weight was calculated for each risk factor using an analytical hierarchy process. The corresponding geographic data were collected, standardized and combined based on a weighted linear combination to produce maps of the suitability for RVF transmission. The accuracy of the resulting maps was assessed using RVF outbreak locations in livestock reported in Kenya and Tanzania between 1998 and 2012 and the ROC curve analysis. Our results confirmed the capacity of the geographic information system-based multi-criteria evaluation method to synthesize available scientific knowledge and to accurately map (AUC = 0.786; 95% CI [0.730–0.842]) the spatial heterogeneity of RVF suitability in East Africa. This approach provides users with a straightforward and easy update of the maps according to data availability or the further development of scientific knowledge.

]]>
<![CDATA[Serological Evidence of Contrasted Exposure to Arboviral Infections between Islands of the Union of Comoros (Indian Ocean)]]> https://www.researchpad.co/article/5989db03ab0ee8fa60bc74ed

A cross sectional serological survey of arboviral infections in humans was conducted on the three islands of the Union of Comoros, Indian Ocean, in order to test a previously suggested contrasted exposure of the three neighboring islands to arthropod-borne epidemics. Four hundred human sera were collected on Ngazidja (Grande Comore), Mwali (Mohéli) and Ndzouani (Anjouan), and were tested by ELISA for IgM and/or IgG antibodies to Dengue (DENV), Chikungunya (CHIKV), Rift Valley fever (RVFV), West Nile (WNV), Tick borne encephalitis (TBEV) and Yellow fever (YFV) viruses and for neutralizing antibodies to DENV serotypes 1–4. Very few sera were positive for IgM antibodies to the tested viruses indicating that the sero-survey was performed during an inter epidemic phase for the investigated arbovirus infections, except for RVF which showed evidence of recent infections on all three islands. IgG reactivity with at least one arbovirus was observed in almost 85% of tested sera, with seropositivity rates increasing with age, indicative of an intense and long lasting exposure of the Comorian population to arboviral risk. Interestingly, the positivity rates for IgG antibodies to DENV and CHIKV were significantly higher on Ngazidja, confirming the previously suggested prominent exposure of this island to these arboviruses, while serological traces of WNV infection were detected most frequently on Mwali suggesting some transmission specificities associated with this island only. The study provides the first evidence for circulation of RVFV in human populations from the Union of Comoros and further suggests that the virus is currently circulating on the three islands in an inconspicuous manner. This study supports contrasted exposure of the islands of the Comoros archipelago to arboviral infections. The observation is discussed in terms of ecological factors that may affect the abundance and distribution of vector populations on the three islands as well as concurring anthropogenic factors that may impact arbovirus transmission in this diverse island ecosystem.

]]>
<![CDATA[Development and evaluation of a bioinformatics approach for designing molecular assays for viral detection]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0063

Background

Viruses belonging to the Flaviviridae and Bunyaviridae families show considerable genetic diversity. However, this diversity is not necessarily taken into account when developing diagnostic assays, which are often based on the pairwise alignment of a limited number of sequences. Our objective was to develop and evaluate a bioinformatics workflow addressing two recurrent issues of molecular assay design: (i) the high intraspecies genetic diversity in viruses and (ii) the potential for cross-reactivity with close relatives.

Methodology

The workflow developed herein was based on two consecutive BLASTn steps; the first was utilized to select highly conserved regions among the viral taxon of interest, and the second was employed to assess the degree of similarity of these highly-conserved regions to close relatives. Subsequently, the workflow was tested on a set of eight viral species, including various strains from the Flaviviridae and Bunyaviridae families.

Principal findings

The genetic diversity ranges from as low as 0.45% variable sites over the complete genome of the Japanese encephalitis virus to more than 16% of variable sites on segment L of the Crimean-Congo hemorrhagic fever virus. Our proposed bioinformatics workflow allowed the selection—based on computing scores—of the best target for a diagnostic molecular assay for the eight viral species investigated.

Conclusions/Significance

Our bioinformatics workflow allowed rapid selection of highly conserved and specific genomic fragments among the investigated viruses, while considering up to several hundred complete genomic sequences. The pertinence of this workflow will increase in parallel to the number of sequences made publicly available. We hypothesize that our workflow might be utilized to select diagnostic molecular markers for higher organisms with more complex genomes, provided the sequences are made available.

]]>
<![CDATA[Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach]]> https://www.researchpad.co/article/5989daf5ab0ee8fa60bc2a31

Background

Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania.

Materials and Methods

Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values.

Principal Findings

Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001).

Conclusion/Significance

The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics.

]]>
<![CDATA[The Epidemiology of Rift Valley Fever in Mayotte: Insights and Perspectives from 11 Years of Data]]> https://www.researchpad.co/article/5989d9d2ab0ee8fa60b64703

Rift Valley fever (RVF) is a zoonotic arboviral disease that is a threat to human health, animal health and production, mainly in Sub-Saharan Africa. RVF virus dynamics have been poorly studied due to data scarcity. On the island of Mayotte in the Indian Ocean, off the Southeastern African coast, RVF has been present since at least 2004. Several retrospective and prospective serological surveys in livestock have been conducted over eleven years (2004–15). These data are collated and presented here. Temporal patterns of seroprevalence were plotted against time, as well as age-stratified seroprevalence. Results suggest that RVF was already present in 2004–07. An epidemic occurred between 2008 and 2010, with IgG and IgM peak annual prevalences of 36% in 2008–09 (N = 142, n = 51, 95% CI [17–55]) and 41% (N = 96, n = 39, 95% CI [25–56]), respectively. The virus seems to be circulating at a low level since 2011, causing few new infections. In 2015, about 95% of the livestock population was susceptible (IgG annual prevalence was 6% (N = 584, n = 29, 95% CI [3–10])). Monthly rainfall varied a lot (2–540mm), whilst average temperature remained high with little variation (about 25–30°C). This large dataset collected on an insular territory for more than 10 years, suggesting a past epidemic and a current inter-epidemic period, represents a unique opportunity to study RVF dynamics. Further data collection and modelling work may be used to test different scenarios of animal imports and rainfall pattern that could explain the observed epidemiological pattern and estimate the likelihood of a potential re-emergence.

]]>
<![CDATA[Severe Fever with Thrombocytopenia Syndrome Virus Antigen Detection Using Monoclonal Antibodies to the Nucleocapsid Protein]]> https://www.researchpad.co/article/5989da31ab0ee8fa60b846e5

Background

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease with a high case fatality rate, and is caused by the SFTS virus (SFTSV). SFTS is endemic to China, South Korea, and Japan. The viral RNA level in sera of patients with SFTS is known to be strongly associated with outcomes. Virological SFTS diagnosis with high sensitivity and specificity are required in disease endemic areas.

Methodology/Principal Findings

We generated novel monoclonal antibodies (MAbs) against the SFTSV nucleocapsid (N) protein and developed a sandwich antigen (Ag)-capture enzyme-linked immunosorbent assay (ELISA) for the detection of N protein of SFTSV using MAb and polyclonal antibody as capture and detection antibodies, respectively. The Ag-capture system was capable of detecting at least 350–1220 TCID50/100 μl/well from the culture supernatants of various SFTSV strains. The efficacy of the Ag-capture ELISA in SFTS diagnosis was evaluated using serum samples collected from patients suspected of having SFTS in Japan. All 24 serum samples (100%) containing high copy numbers of viral RNA (>105 copies/ml) showed a positive reaction in the Ag-capture ELISA, whereas 12 out of 15 serum samples (80%) containing low copy numbers of viral RNA (<105 copies/ml) showed a negative reaction in the Ag-capture ELISA. Among these Ag-capture ELISA-negative 12 samples, 9 (75%) were positive for IgG antibodies against SFTSV.

Conclusions

The newly developed Ag-capture ELISA is useful for SFTS diagnosis in acute phase patients with high levels of viremia.

]]>
<![CDATA[Rift Valley Fever Vaccine Virus Clone 13 Is Able to Cross the Ovine Placental Barrier Associated with Foetal Infections, Malformations, and Stillbirths]]> https://www.researchpad.co/article/5989da42ab0ee8fa60b8a496

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that affects domesticated ruminants and occasionally humans. Classical RVF vaccines are based on formalin-inactivated virus or the live-attenuated Smithburn strain. The inactivated vaccine is highly safe but requires multiple administrations and yearly re-vaccinations. Although the Smithburn vaccine provides solid protection after a single vaccination, this vaccine is not safe for pregnant animals. An alternative live-attenuated vaccine, named Clone 13, carries a large natural deletion in the NSs gene which encodes the major virulence factor of the virus. The Clone 13 vaccine was previously shown to be safe for young lambs and calves. Moreover, a study in pregnant ewes suggested that the vaccine could also be applied safely during gestation. To anticipate on a possible future incursion of RVFV in Europe, we have evaluated the safety of Clone 13 for young lambs and pregnant ewes. In line with the guidelines from the World Organisation for Animal health (Office International des Epizooties, OIE) and regulations of the European Pharmacopeia (EP), these studies were performed with an overdose. Our studies with lambs showed that Clone 13 dissemination within vaccinated animals is very limited. Moreover, the Clone 13 vaccine virus was not shed nor spread to in-contact sentinels and did not revert to virulence upon animal-to-animal passage. Importantly, a large experiment with pregnant ewes demonstrated that the Clone 13 virus is able to spread to the fetus, resulting in malformations and stillbirths. Altogether, our results suggest that Clone 13 can be applied safely in lambs, but that caution should be taken when Clone 13 is used in pregnant animals, particularly during the first trimester of gestation.

]]>
<![CDATA[Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula]]> https://www.researchpad.co/article/5989db54ab0ee8fa60bdd0b0

Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Results revealed broad circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from three major waves of virus introduction: the first from Zimbabwe, and the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa appear to have resulted from a single introduction from Central African Republic. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits.

]]>
<![CDATA[Predicting Rift Valley Fever Inter-epidemic Activities and Outbreak Patterns: Insights from a Stochastic Host-Vector Model]]> https://www.researchpad.co/article/5989daa2ab0ee8fa60ba629e

Rift Valley fever (RVF) outbreaks are recurrent, occurring at irregular intervals of up to 15 years at least in East Africa. Between outbreaks disease inter-epidemic activities exist and occur at low levels and are maintained by female Aedes mcintoshi mosquitoes which transmit the virus to their eggs leading to disease persistence during unfavourable seasons. Here we formulate and analyse a full stochastic host-vector model with two routes of transmission: vertical and horizontal. By applying branching process theory we establish novel relationships between the basic reproduction number, R0, vertical transmission and the invasion and extinction probabilities. Optimum climatic conditions and presence of mosquitoes have not fully explained the irregular oscillatory behaviour of RVF outbreaks. Using our model without seasonality and applying van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how outbreaks multi-year periodicity varies with the vertical transmission. Our theory predicts complex fluctuations with a dominant period of 1 to 10 years which essentially depends on the efficiency of vertical transmission. Our predictions are then compared to temporal patterns of disease outbreaks in Tanzania, Kenya and South Africa. Our analyses show that interaction between nonlinearity, stochasticity and vertical transmission provides a simple but plausible explanation for the irregular oscillatory nature of RVF outbreaks. Therefore, we argue that while rainfall might be the major determinant for the onset and switch-off of an outbreak, the occurrence of a particular outbreak is also a result of a build up phenomena that is correlated to vertical transmission efficiency.

]]>
<![CDATA[A role for glycolipid biosynthesis in severe fever with thrombocytopenia syndrome virus entry]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf2cf

A novel bunyavirus was recently found to cause severe febrile illness with high mortality in agricultural regions of China, Japan, and South Korea. This virus, named severe fever with thrombocytopenia syndrome virus (SFTSV), represents a new group within the Phlebovirus genus of the Bunyaviridae. Little is known about the viral entry requirements beyond showing dependence on dynamin and endosomal acidification. A haploid forward genetic screen was performed to identify host cell requirements for SFTSV entry. The screen identified dependence on glucosylceramide synthase (ugcg), the enzyme responsible for initiating de novo glycosphingolipid biosynthesis. Genetic and pharmacological approaches confirmed that UGCG expression and enzymatic activity were required for efficient SFTSV entry. Furthermore, inhibition of UGCG affected a post-internalization stage of SFTSV entry, leading to the accumulation of virus particles in enlarged cytoplasmic structures, suggesting impaired trafficking and/or fusion of viral and host membranes. These findings specify a role for glucosylceramide in SFTSV entry and provide a novel target for antiviral therapies.

]]>
<![CDATA[Rift Valley Fever Virus Circulating among Ruminants, Mosquitoes and Humans in the Central African Republic]]> https://www.researchpad.co/article/5989da84ab0ee8fa60b9bd80

Background

Rift Valley fever virus (RVFV) causes a viral zoonosis, with discontinuous epizootics and sporadic epidemics, essentially in East Africa. Infection with this virus causes severe illness and abortion in sheep, goats, and cattle as well as other domestic animals. Humans can also be exposed through close contact with infectious tissues or by bites from infected mosquitoes, primarily of the Aedes and Culex genuses. Although the cycle of RVFV infection in savannah regions is well documented, its distribution in forest areas in central Africa has been poorly investigated.

Methodology/Principal Findings

To evaluate current circulation of RVFV among livestock and humans living in the Central African Republic (CAR), blood samples were collected from sheep, cattle, and goats and from people at risk, such as stock breeders and workers in slaughterhouses and livestock markets. The samples were tested for anti-RVFV immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. We also sequenced the complete genomes of two local strains, one isolated in 1969 from mosquitoes and one isolated in 1985 from humans living in forested areas. The 1271 animals sampled comprised 727 cattle, 325 sheep, and 219 goats at three sites. The overall seroprevalence of anti-RVFV IgM antibodies was 1.9% and that of IgG antibodies was 8.6%. IgM antibodies were found only during the rainy season, but the frequency of IgG antibodies did not differ significantly by season. No evidence of recent RVFV infection was found in 335 people considered at risk; however, 16.7% had evidence of past infection. Comparison of the nucleotide sequences of the strains isolated in the CAR with those isolated in other African countries showed that they belonged to the East/Central African cluster.

Conclusion and significance

This study confirms current circulation of RVFV in CAR. Further studies are needed to determine the potential vectors involved and the virus reservoirs.

]]>
<![CDATA[Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique]]> https://www.researchpad.co/article/5989db4aab0ee8fa60bd9fbe

Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with ‘insect-specific’ viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV). The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.

]]>
<![CDATA[Mechanistic Insight into the Host Transcription Inhibition Function of Rift Valley Fever Virus NSs and Its Importance in Virulence]]> https://www.researchpad.co/article/5989da26ab0ee8fa60b809d6

Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, causes periodic outbreaks in livestocks and humans in countries of the African continent and Middle East. RVFV NSs protein, a nonstructural protein, is a major virulence factor that exhibits several important biological properties. These include suppression of general transcription, inhibition of IFN-β promoter induction and degradation of double-stranded RNA-dependent protein kinase R. Although each of these biological functions of NSs are considered important for countering the antiviral response in the host, the individual contributions of these functions towards RVFV virulence remains unclear. To examine this, we generated two RVFV MP-12 strain-derived mutant viruses. Each carried mutations in NSs that specifically targeted its general transcription inhibition function without affecting its ability to degrade PKR and inhibit IFN-β promoter induction, through its interaction with Sin3-associated protein 30, a part of the repressor complex at the IFN-β promoter. Using these mutant viruses, we have dissected the transcription inhibition function of NSs and examined its importance in RVFV virulence. Both NSs mutant viruses exhibited a differentially impaired ability to inhibit host transcription when compared with MP-12. It has been reported that NSs suppresses general transcription by interfering with the formation of the transcription factor IIH complex, through the degradation of the p62 subunit and sequestration of the p44 subunit. Our study results lead us to suggest that the ability of NSs to induce p62 degradation is the major contributor to its general transcription inhibition property, whereas its interaction with p44 may not play a significant role in this function. Importantly, RVFV MP-12-NSs mutant viruses with an impaired general transcription inhibition function showed a reduced cytotoxicity in cell culture and attenuated virulence in young mice, compared with its parental virus MP-12, highlighting the contribution of NSs-mediated general transcription inhibition towards RVFV virulence.

]]>
<![CDATA[Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya]]> https://www.researchpad.co/article/5989db41ab0ee8fa60bd6e76

Background

The impacts of vaccination on the transmission of Rift Valley fever virus (RVFV) have not been evaluated. We have developed a RVFV transmission model comprising two hosts—cattle as a separate host and sheep and goats as one combined host (herein after referred to as sheep)—and two vectors—Aedes species (spp) and Culex spp—and used it to predict the impacts of: (1) reactive vaccination implemented at various levels of coverage at pre-determined time points, (2) targeted vaccination involving either of the two host species, and (3) a periodic vaccination implemented biannually or annually before an outbreak.

Methodology/Principal Findings

The model comprises coupled vector and host modules where the dynamics of vectors and hosts are described using a system of difference equations. Vector populations are structured into egg, larva, pupa and adult stages and the latter stage is further categorized into three infection categories: susceptible, exposed and infectious mosquitoes. The survival rates of the immature stages (egg, larva and pupa) are dependent on rainfall densities extracted from the Tropical Rainfall Measuring Mission (TRMM) for a Rift Valley fever (RVF) endemic site in Kenya over a period of 1827 days. The host populations are structured into four age classes comprising young, weaners, yearlings and adults and four infection categories including susceptible, exposed, infectious, and immune categories. The model reproduces the 2006/2007 RVF outbreak reported in empirical surveys in the target area and other seasonal transmission events that are perceived to occur during the wet seasons. Mass reactive vaccination strategies greatly reduce the potential for a major outbreak. The results also suggest that the effectiveness of vaccination can be enhanced by increasing the vaccination coverage, targeting vaccination on cattle given that this species plays a major role in the transmission of the virus, and using both periodic and reactive vaccination strategies.

Conclusion/Significance

Reactive vaccination can be effective in mitigating the impacts of RVF outbreaks but practically, it is not always possible to have this measure implemented satisfactorily due to the rapid onset and evolution of RVF epidemics. This analysis demonstrates that both periodic and reactive vaccination ought to be used strategically to effectively control the disease.

]]>