ResearchPad - rna-and-rna-protein-complexes https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Genetic identification of the functional surface for RNA binding by <i>Escherichia coli</i> ProQ]]> https://www.researchpad.co/article/N5450feb3-1628-4bb4-b1ba-e6e2944bb4b8 The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5′ and 3′ untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ’s interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ’s NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.

]]>
<![CDATA[Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1]]> https://www.researchpad.co/article/Nbd8d15e0-13a5-401a-b593-49210179af13 The genetic etiology of premature ovarian insufficiency (POI) has been well established to date, however, the role of long noncoding RNAs (lncRNAs) in POI is largely unknown. In this study, we identified a down-expressed lncRNA HCP5 in granulosa cells (GCs) from biochemical POI (bPOI) patients, which impaired DNA damage repair and promoted apoptosis of GCs. Mechanistically, we discovered that HCP5 stabilized the interaction between YB1 and its partner ILF2, which could mediate YB1 transferring into the nucleus of GCs. HCP5 silencing affected the localization of YB1 into nucleus and reduced the binding of YB1 to the promoter of MSH5 gene, thereby diminishing MSH5 expression. Taken together, we identified that the decreased expression of HCP5 in bPOI contributed to dysfunctional GCs by regulating MSH5 transcription and DNA damage repair via the interaction with YB1, providing a novel epigenetic mechanism for POI pathogenesis.

]]>
<![CDATA[Deletion of Endonuclease V suppresses chemically induced hepatocellular carcinoma]]> https://www.researchpad.co/article/N71abc15b-ba7b-4237-9cf3-374d0fc7ebc4 Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV−/− tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV−/− livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV−/− tumor suppressive phenotype calls for related studies in human HCC.

]]>
<![CDATA[The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution]]> https://www.researchpad.co/article/N3e6d0fb9-3522-4bad-a0c7-0899189f694e

Abstract

Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1−/− oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.

]]>
<![CDATA[Correlation between equi-partition of aminoacyl-tRNA synthetases and amino-acid biosynthesis pathways]]> https://www.researchpad.co/article/N3c595c04-005d-46ad-a809-124898c099b3

Abstract

The partition of aminoacyl-tRNA synthetases (aaRSs) into two classes of equal size and the correlated amino acid distribution is a puzzling still unexplained observation. We propose that the time scale of the amino-acid synthesis, assumed to be proportional to the number of reaction steps (NE) involved in the biosynthesis pathway, is one of the parameters that controlled the timescale of aaRSs appearance. Because all pathways are branched at fructose-6-phosphate on the metabolic pathway, this product is defined as the common origin for the NE comparison. For each amino-acid, the NE value, counted from the origin to the final product, provides a timescale for the pathways to be established. An archeological approach based on NE reveals that aaRSs of the two classes are generated in pair along this timescale. The results support the coevolution theory for the origin of the genetic code with an earlier appearance of class II aaRSs.

]]>
<![CDATA[Good guide, bad guide: spacer sequence-dependent cleavage efficiency of Cas12a]]> https://www.researchpad.co/article/N0957aa3a-4769-4a20-9561-ac0ce59ebfb1

Abstract

Genome editing has recently made a revolutionary development with the introduction of the CRISPR–Cas technology. The programmable CRISPR-associated Cas9 and Cas12a nucleases generate specific dsDNA breaks in the genome, after which host DNA-repair mechanisms can be manipulated to implement the desired editing. Despite this spectacular progress, the efficiency of Cas9/Cas12a-based engineering can still be improved. Here, we address the variation in guide-dependent efficiency of Cas12a, and set out to reveal the molecular basis of this phenomenon. We established a sensitive and robust in vivo targeting assay based on loss of a target plasmid encoding the red fluorescent protein (mRFP). Our results suggest that folding of both the precursor guide (pre-crRNA) and the mature guide (crRNA) have a major influence on Cas12a activity. Especially, base pairing of the direct repeat, other than with itself, was found to be detrimental to the activity of Cas12a. Furthermore, we describe different approaches to minimize base-pairing interactions between the direct repeat and the variable part of the guide. We show that design of the 3′ end of the guide, which is not involved in target strand base pairing, may result in substantial improvement of the guide's targeting potential and hence of its genome editing efficiency.

]]>
<![CDATA[rRNA expansion segment 27Lb modulates the factor recruitment capacity of the yeast ribosome and shapes the proteome]]> https://www.researchpad.co/article/N38d0ed33-e3ef-416d-ad62-dc0799eae104

Abstract

Fine-tuned regulation of protein biosynthesis is crucial for cellular fitness and became even more vital when cellular and organismal complexity increased during the course of evolution. In order to cope with this augmented demand for translation control, eukaryal ribosomes have gained extensions both at the ribosomal protein and rRNA levels. Here we analyze the functional role of ES27L, an rRNA expansion segment in the large ribosomal subunit of Saccharomyces cerevisiae. Deletion of the b-arm of this expansion segment, called ES27Lb, did not hamper growth during optimal conditions, thus demonstrating that this 25S rRNA segment is not inherently crucial for ribosome functioning. However, reductive stress results in retarded growth and rendered unique protein sets prone to aggregation. Lack of ES27Lb negatively affects ribosome-association of known co-translational N-terminal processing enzymes which in turn contributes to the observed protein aggregation. Likely as a compensatory response to these challenges, the truncated ribosomes showed re-adjusted translation of specific sets of mRNAs and thus fine-tune the translatome in order to re-establish proteostasis. Our study gives comprehensive insight into how a highly conserved eukaryal rRNA expansion segment defines ribosomal integrity, co-translational protein maturation events and consequently cellular fitness.

]]>
<![CDATA[Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption]]> https://www.researchpad.co/article/N2bfac294-fad7-4a1a-ad6a-ee3240de3046

Abstract

During oocyte maturation, changes in gene expression depend exclusively on translation and degradation of maternal mRNAs rather than transcription. Execution of this translation program is essential for assembling the molecular machinery required for meiotic progression, fertilization, and embryo development. With the present study, we used a RiboTag/RNA-Seq approach to explore the timing of maternal mRNA translation in quiescent oocytes as well as in oocytes progressing through the first meiotic division. This genome-wide analysis reveals a global switch in maternal mRNA translation coinciding with oocyte re-entry into the meiotic cell cycle. Messenger RNAs whose translation is highly active in quiescent oocytes invariably become repressed during meiotic re-entry, whereas transcripts repressed in quiescent oocytes become activated. Experimentally, we have defined the exact timing of the switch and the repressive function of CPE elements, and identified a novel role for CPEB1 in maintaining constitutive translation of a large group of maternal mRNAs during maturation.

]]>
<![CDATA[An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype]]> https://www.researchpad.co/article/N0ad513a8-c08e-42f1-b25a-10638beb8544

Abstract

The RNA-editing protein ADAR is essential for early development in the mouse. Genetic evidence suggests that A to I editing marks endogenous RNAs as ‘self’. Today, different Adar knockout alleles have been generated that show a common phenotype of apoptosis, liver disintegration, elevated immune response and lethality at E12.5. All the Adar knockout alleles can be rescued by a concomitant deletion of the innate immunity genes Mavs or Ifih1 (MDA5), albeit to different extents. This suggests multiple functions of ADAR. We analyze AdarΔ7-9 mice that show a unique growth defect phenotype when rescued by Mavs. We show that AdarΔ7-9 can form a truncated, unstable, editing deficient protein that is mislocalized. Histological and hematologic analysis of these mice indicate multiple tissue- and hematopoietic defects. Gene expression profiling shows dysregulation of Rps3a1 and Rps3a3 in rescued AdarΔ7-9. Consistently, a distortion in 40S and 60S ribosome ratios is observed in liver cells. This dysregulation is also seen in AdarΔ2-13; Mavs−/− but not in AdarE861A/E861A; Ifih1−/− mice, suggesting editing-independent functions of ADAR in regulating expression levels of Rps3a1 and Rps3a3. In conclusion, our study demonstrates the importance of ADAR in post-natal development which cannot be compensated by ADARB1.

]]>
<![CDATA[Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids]]> https://www.researchpad.co/article/N2413ba3b-5c85-472d-b929-694346044274

Abstract

Diplonemids are highly abundant heterotrophic marine protists. Previous studies showed that their strikingly bloated mitochondrial genome is unique because of systematic gene fragmentation and manifold RNA editing. Here we report a comparative study of mitochondrial genome architecture, gene structure and RNA editing of six recently isolated, phylogenetically diverse diplonemid species. Mitochondrial gene fragmentation and modes of RNA editing, which include cytidine-to-uridine (C-to-U) and adenosine-to-inosine (A-to-I) substitutions and 3′ uridine additions (U-appendage), are conserved across diplonemids. Yet as we show here, all these features have been pushed to their extremes in the Hemistasiidae lineage. For example, Namystynia karyoxenos has its genes fragmented into more than twice as many modules than other diplonemids, with modules as short as four nucleotides. Furthermore, we detected in this group multiple A-appendage and guanosine-to-adenosine (G-to-A) substitution editing events not observed before in diplonemids and found very rarely elsewhere. With >1,000 sites, C-to-U and A-to-I editing in Namystynia is nearly 10 times more frequent than in other diplonemids. The editing density of 12% in coding regions makes Namystynia’s the most extensively edited transcriptome described so far. Diplonemid mitochondrial genome architecture, gene structure and post-transcriptional processes display such high complexity that they challenge all other currently known systems.

]]>
<![CDATA[The SINEB1 element in the long non-coding RNA Malat1 is necessary for TDP-43 proteostasis]]> https://www.researchpad.co/article/Nedd2dc89-f839-46b6-a862-bca4d29eac62

Abstract

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely ‘hijacked’ by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA–protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.

]]>
<![CDATA[A versatile cis-acting element reporter system to study the function, maturation and stability of ribosomal RNA mutants in archaea]]> https://www.researchpad.co/article/N481ae59b-2264-4796-bc8d-d412c1f2a212

Abstract

General molecular principles of ribosome biogenesis have been well explored in bacteria and eukaryotes. Collectively, these studies have revealed important functional differences and few similarities between these processes. Phylogenetic studies suggest that the information processing machineries from archaea and eukaryotes are evolutionary more closely related than their bacterial counterparts. These observations raise the question of how ribosome synthesis in archaea may proceed in vivo. In this study, we describe a versatile plasmid-based cis-acting reporter system allowing to analyze in vivo the consequences of ribosomal RNA mutations in the model archaeon Haloferax volcanii. Applying this system, we provide evidence that the bulge-helix-bulge motif enclosed within the ribosomal RNA processing stems is required for the formation of archaeal-specific circular-pre-rRNA intermediates and mature rRNAs. In addition, we have collected evidences suggesting functional coordination of the early steps of ribosome synthesis in H. volcanii. Together our investigation describes a versatile platform allowing to generate and functionally analyze the fate of diverse rRNA variants, thereby paving the way to better understand the cis-acting molecular determinants necessary for archaeal ribosome synthesis, maturation, stability and function.

]]>
<![CDATA[Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition]]> https://www.researchpad.co/article/Nfe85f2ab-6616-4916-998d-57e7a1a740ae

Abstract

Staufen1 (STAU1) is a dsRNA binding protein mediating mRNA transport and localization, translational control and STAU1-mediated mRNA decay (SMD). The STAU1 binding site (SBS) within human ADP-ribosylation factor1 (ARF1) 3′UTR binds STAU1 and this downregulates ARF1 cytoplasmic mRNA levels by SMD. However, how STAU1 recognizes specific mRNA targets is still under debate. Our structure of the ARF1 SBS–STAU1 complex uncovers target recognition by STAU1. STAU1 dsRNA binding domain (dsRBD) 4 interacts with two pyrimidines and one purine from the minor groove side via helix α1, the β1–β2 loop anchors the dsRBD at the end of the dsRNA and lysines in helix α2 bind to the phosphodiester backbone from the major groove side. STAU1 dsRBD3 displays the same binding mode with specific recognition of one guanine base. Mutants disrupting minor groove recognition of ARF1 SBS affect in vitro binding and reduce SMD in vivo. Our data thus reveal how STAU1 recognizes minor groove features in dsRNA relevant for target selection.

]]>
<![CDATA[Ribosome assembly defects subvert initiation Factor3 mediated scrutiny of bona fide start signal]]> https://www.researchpad.co/article/N7711f58c-b0b2-44ca-86bd-c733caff0a8c

Abstract

In bacteria, the assembly factors tightly orchestrate the maturation of ribosomes whose competency for protein synthesis is validated by translation machinery at various stages of translation cycle. However, what transpires to the quality control measures when the ribosomes are produced with assembly defects remains enigmatic. In Escherichia coli, we show that 30S ribosomes that harbour assembly defects due to the lack of assembly factors such as RbfA and KsgA display suboptimal initiation codon recognition and bypass the critical codon–anticodon proofreading steps during translation initiation. These premature ribosomes on entering the translation cycle compromise the fidelity of decoding that gives rise to errors during initiation and elongation. We show that the assembly defects compromise the binding of initiation factor 3 (IF3), which in turn appears to license the rapid transition of 30S (pre) initiation complex to 70S initiation complex by tempering the validation of codon–anticodon interaction during translation initiation. This suggests that the premature ribosomes harbouring the assembly defects subvert the IF3 mediated proofreading of cognate initiation codon to enter the translation cycle.

]]>
<![CDATA[Bias-minimized quantification of microRNA reveals widespread alternative processing and 3′ end modification]]> https://www.researchpad.co/article/5c9bc653d5eed0c484ee9b11

Abstract

MicroRNAs (miRNAs) modulate diverse biological and pathological processes via post-transcriptional gene silencing. High-throughput small RNA sequencing (sRNA-seq) has been widely adopted to investigate the functions and regulatory mechanisms of miRNAs. However, accurate quantification of miRNAs has been limited owing to the severe ligation bias in conventional sRNA-seq methods. Here, we quantify miRNAs and their variants (known as isomiRs) by an improved sRNA-seq protocol, termed AQ-seq (accurate quantification by sequencing), that utilizes adapters with terminal degenerate sequences and a high concentration of polyethylene glycol (PEG), which minimize the ligation bias during library preparation. Measurement using AQ-seq allows us to correct the previously misannotated 5′ end usage and strand preference in public databases. Importantly, the analysis of 5′ terminal heterogeneity reveals widespread alternative processing events which have been underestimated. We also identify highly uridylated miRNAs originating from the 3p strands, indicating regulations mediated by terminal uridylyl transferases at the pre-miRNA stage. Taken together, our study reveals the complexity of the miRNA isoform landscape, allowing us to refine miRNA annotation and to advance our understanding of miRNA regulation. Furthermore, AQ-seq can be adopted to improve other ligation-based sequencing methods including crosslinking-immunoprecipitation-sequencing (CLIP-seq) and ribosome profiling (Ribo-seq).

]]>
<![CDATA[Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins]]> https://www.researchpad.co/article/5c5f1ba7d5eed0c48469b8bc

Abstract

Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5′ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5′ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.

]]>
<![CDATA[Degenerate minigene library analysis enables identification of altered branch point utilization by mutant splicing factor 3B1 (SF3B1)]]> https://www.researchpad.co/article/5c5f1bbed5eed0c48469b9fb

Abstract

Cancer-associated mutations of the core splicing factor 3 B1 (SF3B1) result in selection of novel 3′ splice sites (3′SS), but precise molecular mechanisms of oncogenesis remain unclear. SF3B1 stabilizes the interaction between U2 snRNP and branch point (BP) on the pre-mRNA. It has hence been speculated that a change in BP selection is the basis for novel 3′SS selection. Direct quantitative determination of BP utilization is however technically challenging. To define BP utilization by SF3B1-mutant spliceosomes, we used an overexpression approach in human cells as well as a complementary strategy using isogenic murine embryonic stem cells with monoallelic K700E mutations constructed via CRISPR/Cas9-based genome editing and a dual vector homology-directed repair methodology. A synthetic minigene library with degenerate regions in 3′ intronic regions (3.4 million individual minigenes) was used to compare BP usage of SF3B1K700E and SF3B1WT. Using this model, we show that SF3B1K700E spliceosomes utilize non-canonical sequence variants (at position −1 relative to BP adenosine) more frequently than wild-type spliceosomes. These predictions were confirmed using minigene splicing assays. Our results suggest a model of BP utilization by mutant SF3B1 wherein it is able to utilize non-consensus alternative BP sequences by stabilizing weaker U2-BP interactions.

]]>
<![CDATA[Multiple RNA–RNA tertiary interactions are dispensable for formation of a functional U2/U6 RNA catalytic core in the spliceosome]]> https://www.researchpad.co/article/5c26b33dd5eed0c48475f9b9

Abstract

The active 3D conformation of the spliceosome's catalytic U2/U6 RNA core is stabilised by a network of secondary and tertiary RNA interactions, but also depends on spliceosomal proteins for its formation. To determine the contribution towards splicing of specific RNA secondary and tertiary interactions in the U2/U6 RNA core, we introduced mutations in critical U6 nucleotides and tested their effect on splicing using a yeast in vitro U6 depletion/complementation system. Elimination of selected RNA tertiary interactions involving the U6 catalytic triad, or deletions of the bases of U6-U80 or U6-A59, had moderate to no effect on splicing, showing that the affected secondary and tertiary interactions are not required for splicing catalysis. However, removal of the base of U6-G60 of the catalytic triad completely blocked splicing, without affecting assembly of the activated spliceosome or its subsequent conversion into a B*-like complex. Our data suggest that the catalytic configuration of the RNA core that allows catalytic metal M1 binding can be maintained by Protein–RNA contacts. However, RNA stacking interactions in the U2/U6 RNA core are required for productive coordination of metal M2. The functional conformation of the U2/U6 RNA core is thus highly buffered, with overlapping contributions from RNA–RNA and Protein–RNA interactions.

]]>
<![CDATA[The structural basis of CstF-77 modulation of cleavage and polyadenylation through stimulation of CstF-64 activity]]> https://www.researchpad.co/article/5c26b328d5eed0c48475f5aa

Abstract

Cleavage and polyadenylation (C/P) of mRNA is an important cellular process that promotes increased diversity of mRNA isoforms and could change their stability in different cell types. The cleavage stimulation factor (CstF) complex, part of the C/P machinery, binds to U- and GU-rich sequences located downstream from the cleavage site through its RNA-binding subunit, CstF-64. Less is known about the function of the other two subunits of CstF, CstF-77 and CstF-50. Here, we show that the carboxy-terminus of CstF-77 plays a previously unrecognized role in enhancing C/P by altering how the RNA recognition motif (RRM) of CstF-64 binds RNA. In support of this finding, we also show that CstF-64 relies on CstF-77 to be transported to the nucleus; excess CstF-64 localizes to the cytoplasm, possibly via interaction with cytoplasmic RNAs. Reverse genetics and nuclear magnetic resonance studies of recombinant CstF-64 (RRM-Hinge) and CstF-77 (monkeytail-carboxy-terminal domain) indicate that the last 30 amino acids of CstF-77 increases the stability of the RRM, thus altering the affinity of the complex for RNA. These results provide new insights into the mechanism by which CstF regulates the location of the RNA cleavage site during C/P.

]]>
<![CDATA[Dynamic network approach for the modelling of genomic sub-complexes in multi-segmented viruses]]> https://www.researchpad.co/article/5c26b356d5eed0c48475fe3b

Abstract

Viruses with segmented genomes, including pathogens such as influenza virus, Rotavirus and Bluetongue virus (BTV), face the collective challenge of packaging their genetic material in terms of the correct number and types of segments. Here we develop a novel network approach to predict RNA–RNA interactions between different genomic segments. Experimental data on RNA complex formation in the multi-segmented BTV genome are used to establish proof-of-concept of this technique. In particular, we show that trans interactions between segments occur at multiple specific sites, termed segment assortment signals (SASs) that are dispersed across each segment. In order to validate the putative trans acting networks, we used various biochemical and molecular techniques which confirmed predictions of the RNA network approach. A combination of mutagenesis and reverse genetics systems revealed that the RNA–RNA interacting sites identified are indeed responsible for segment assortment and complex formation, which are essential criteria for genome packaging. This paves the way for their exploitation as novel types of drug target, either to inhibit assembly, or for designing defective interfering particles containing an incomplete set of genomic segments.

]]>