ResearchPad - sensory-and-motor-systems https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Linking Motoneuron PIC Location to Motor Function in Closed-Loop Motor Unit System Including Afferent Feedback: A Computational Investigation]]> https://www.researchpad.co/article/elastic_article_8062 The goal of this study is to investigate how the activation location of persistent inward current (PIC) over motoneuron dendrites is linked to motor output in the closed-loop motor unit. Here, a physiologically realistic model of a motor unit including afferent inputs from muscle spindles was comprehensively analyzed under intracellular stimulation at the soma and synaptic inputs over the dendrites during isometric contractions over a full physiological range of muscle lengths. The motor output of the motor unit model was operationally assessed by evaluating the rate of force development, the degree of force potentiation and the capability of self-sustaining force production. Simulations of the model motor unit demonstrated a tendency for a faster rate of force development, a greater degree of force potentiation, and greater capacity for self-sustaining force production under both somatic and dendritic stimulation of the motoneuron as the PIC channels were positioned farther from the soma along the path of motoneuron dendrites. Interestingly, these effects of PIC activation location on force generation significantly differed among different states of muscle length. The rate of force development and the degree of force potentiation were systematically modulated by the variation of PIC channel location for shorter-than-optimal muscles but not for optimal and longer-than-optimal muscles. Similarly, the warm-up behavior of the motor unit depended on the interplay between PIC channel location and muscle length variation. These results suggest that the location of PIC activation over motoneuron dendrites may be distinctively reflected in the motor performance during shortening muscle contractions.

]]>
<![CDATA[Single-Pulse TMS over the Parietal Cortex Does Not Impair Sensorimotor Perturbation-Induced Changes in Motor Commands]]> https://www.researchpad.co/article/Nddedcc16-ead8-4853-9aa6-c2c8f0c52134

Abstract

Intermittent exposure to a sensorimotor perturbation, such as a visuomotor rotation, is known to cause a directional bias on the subsequent movement that opposes the previously experienced perturbation. To date, it is unclear whether the parietal cortex is causally involved in this postperturbation movement bias. In a recent electroencephalogram study, Savoie et al. (2018) observed increased parietal activity in response to an intermittent visuomotor perturbation, raising the possibility that the parietal cortex could subserve this change in motor behavior. The goal of the present study was to causally test this hypothesis. Human participants (N = 28) reached toward one of two visual targets located on either side of a fixation point, while being pseudorandomly submitted to a visuomotor rotation. On half of all rotation trials, single-pulse transcranial magnetic stimulation (TMS) was applied over the right (N = 14) or left (N = 14) parietal cortex 150 ms after visual feedback provision. To determine whether TMS influenced the postperturbation bias, reach direction was compared on trials that followed rotation with (RS + 1) and without (R + 1) TMS. It was hypothesized that interfering with parietal activity would reduce the movement bias following rotated trials. Results revealed a significant and robust postrotation directional bias compared with both rotation and null rotation trials. Contrary to our hypothesis, however, neither left nor right parietal stimulation significantly impacted the postrotation bias. These data suggest that the parietal areas targeted here may not be critical for perturbation-induced motor output changes to emerge.

]]>
<![CDATA[Aging But Not Age-Related Hearing Loss Dominates the Decrease of Parvalbumin Immunoreactivity in the Primary Auditory Cortex of Mice]]> https://www.researchpad.co/article/N025967a7-fa74-44ba-a9c0-fbe5dd9d3ed0 <![CDATA[Paired Associative Stimulation Fails to Induce Plasticity in Freely Behaving Intact Rats]]> https://www.researchpad.co/article/Nd59c3908-3060-45f8-a4a4-8f3b78060647

Abstract

Paired associative stimulation (PAS) has been explored in humans as a noninvasive tool to drive plasticity and promote recovery after neurologic insult. A more thorough understanding of PAS-induced plasticity is needed to fully harness it as a clinical tool. Here, we tested the efficacy of PAS with multiple interstimulus intervals in an awake rat model to study the principles of associative plasticity. Using chronically implanted electrodes in motor cortex and forelimb, we explored PAS parameters to effectively drive plasticity. We assessed changes in corticomotor excitability using a closed-loop, EMG-controlled cortical stimulation paradigm. We tested 11 PAS intervals, chosen to force the coincidence of neuronal activity in the motor cortex and spinal cord of rats with timings relevant to the principles of Hebbian spike timing-dependent plasticity. However, despite a relatively large number of stimulus pairings (300), none of the tested intervals reliably changed corticospinal excitability relative to control conditions. Our results question PAS effectiveness under these conditions.

]]>
<![CDATA[An Unexpected Dependence of Cortical Depth in Shaping Neural Responsiveness and Selectivity in Mouse Visual Cortex]]> https://www.researchpad.co/article/N267cf9ce-5fe0-4735-a374-0629094d3f1d

Abstract

Two-photon imaging studies in mouse primary visual cortex (V1) consistently report that around half of the neurons respond to oriented grating stimuli. However, in cats and primates, nearly all neurons respond to such stimuli. Here we show that mouse V1 responsiveness and selectivity strongly depends on neuronal depth. Moving from superficial layer 2 down to layer 4, the percentage of visually responsive neurons nearly doubled, ultimately reaching levels similar to what is seen in other species. Over this span, the amplitude of neuronal responses also doubled. Moreover, stimulus selectivity was also modulated, not only with depth but also with response amplitude. Specifically, we found that orientation and direction selectivity were greater in stronger responding neurons, but orientation selectivity decreased with depth whereas direction selectivity increased. Importantly, these depth-dependent trends were found not just between layer 2/3 and layer 4 but at different depths within layer 2/3 itself. Thus, neuronal depth is an important factor to consider when pooling neurons for population analyses. Furthermore, the inability to drive the majority of cells in superficial layer 2/3 of mouse V1 with grating stimuli indicates that there may be fundamental differences in the micro-circuitry and role of V1 between rodents and other mammals.

]]>
<![CDATA[The Operant Plantar Thermal Assay: A Novel Device for Assessing Thermal Pain Tolerance in Mice]]> https://www.researchpad.co/article/N52646525-83a8-405f-8ab1-b4c7def14b2f

Abstract

Pain is a multidimensional experience of sensory-discriminative, cognitive, and affective processes; however, current basic research methods rely heavily on response to threshold stimuli, bypassing the supraspinal processing that ultimately gives rise to the pain experience. We developed the operant plantar thermal assay (OPTA), which utilizes a novel, conflict-based operant task requiring evaluation and active decision-making to obtain reward under thermally aversive conditions to quantify thermal pain tolerance. In baseline measures, male and female mice exhibited similar temperature preferences, however in the OPTA, female mice exhibited greater temperature-dependent tolerance, as defined by choice time spent in an adverse thermal condition to obtain reward. Increasing reward salience (4% vs 10% sucrose solution) led to increased thermal tolerance for males but not females. To determine whether neuropathic and inflammatory pain models alter thermal tolerance, animals with chronic constriction injury (CCI) or complete Freund’s adjuvant (CFA), respectively, were tested in the OPTA. Surprisingly, neuropathic animals exhibited increased thermal tolerance, as shown by greater time spent in the reward zone in an adverse thermal condition, compared with sham animals. There was no effect of inflammation on thermal tolerance. Administration of clonidine in the CCI model led to increased thermal tolerance in both injured and sham animals. In contrast, the non-steroidal anti-inflammatory meloxicam was anti-hyperalgesic in the CFA model, but reduced thermal pain tolerance. These data support the feasibility of using the OPTA to assess thermal pain tolerance to gain new insights into complex pain behaviors and to investigate novel aspects of analgesic efficacy.

]]>
<![CDATA[Cerebral Contribution to the Execution, But Not Recalibration, of Motor Commands in a Novel Walking Environment]]> https://www.researchpad.co/article/N939577c6-9a69-47b0-8b76-b37814c63e4e

Abstract

Human movements are flexible as they continuously adapt to changes in the environment. The recalibration of corrective responses to sustained perturbations (e.g., constant force) altering one’s movement contributes to this flexibility. We asked whether the recalibration of corrective actions involve cerebral structures using stroke as a disease model. We characterized changes in muscle activity in stroke survivors and control subjects before, during, and after walking on a split-belt treadmill moving the legs at different speeds. The recalibration of corrective muscle activity was comparable between stroke survivors and control subjects, which was unexpected given the known deficits in feedback responses poststroke. Also, the intact recalibration in stroke survivors contrasted their limited ability to adjust their muscle activity during steady-state split-belt walking. Our results suggest that the recalibration and execution of motor commands are partially dissociable: cerebral lesions interfere with the execution, but not the recalibration, of motor commands on novel movement demands.

]]>
<![CDATA[A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching]]> https://www.researchpad.co/article/N919cc048-0fd7-4694-87d7-2fb1ec52fb65

Humans and other animals adapt motor commands to predictable disturbances within tens of trials in laboratory conditions. A central question is how does the nervous system adapt to disturbances in natural conditions when exactly the same movements cannot be practiced several times. Because motor commands and sensory feedback together carry continuous information about limb dynamics, we hypothesized that the nervous system could adapt to unexpected disturbances online.

]]>
<![CDATA[Function, Innervation, and Neurotransmitter Signaling in Mice Lacking Type-II Taste Cells]]> https://www.researchpad.co/article/Nc4cfc42f-4a10-4b6b-a17c-a3dab0c5326d

Abstract

The Skn-1a transcription factor (Pou2f3) is required for Type II taste cell differentiation in taste buds. Taste buds in Skn-1a-/- mice lack Type II taste cells but have a concomitant expansion of Type III cells, providing an ideal model to determine the relative role of taste cell types in response specificity. We confirmed that chorda tympani responses to sweet, bitter, and umami stimuli were greatly reduced in the knock-outs (KOs) compared with wild-type (WT) littermates. Skn-1a-/- mice also had reductions to NaCl that were partially amiloride-insensitive, suggesting that both Type II and Type III cells contribute to amiloride-insensitive salt detection in anterior tongue. We also confirmed that responses to sour stimuli are equivalent in the KOs, despite the large increase in the number of Type III taste cells. To examine their innervation, we crossed the Htr3a-GFP (5-HT3A-GFP) reporter mouse with the Skn-1a-/- mice and examined geniculate ganglion neurons for GFP expression and responses to 5-HT. We found no change in the number of 5-HT3A-expressing neurons with KO of Skn-1a. Calcium imaging showed that only 5-HT3A-expressing neurons respond to exogenous 5-HT, while most neurons respond to ATP, similar to WT mice. Interestingly, despite loss of all Type II cells, the P2X3 antagonist AF353 blocked all chorda tympani responses. These data collectively raise questions pertaining the source of ATP signaling in the absence of Type II taste cells and whether the additional Type III cells are innervated by fibers that would have normally innervated Type II cells.

]]>
<![CDATA[A Comparison between Mouse, In Silico, and Robot Odor Plume Navigation Reveals Advantages of Mouse Odor Tracking]]> https://www.researchpad.co/article/N9644a4e2-0487-4ca0-9d2e-2fd363069795

Localization of odors is essential to animal survival, and thus animals are adept at odor navigation. In natural conditions animals encounter odor sources in which odor is carried by air flow varying in complexity. We sought to identify potential minimalist strategies that can effectively be used for odor-based navigation and asses their performance in an increasingly chaotic environment.

]]>
<![CDATA[Maternal Fluoxetine Exposure Alters Cortical Hemodynamic and Calcium Response of Offspring to Somatosensory Stimuli]]> https://www.researchpad.co/article/Nd207bfc7-3c89-4609-9cc9-52b3f145e7b1

Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model.

]]>
<![CDATA[Eye Movements during Visuomotor Adaptation Represent Only Part of the Explicit Learning]]> https://www.researchpad.co/article/N78fd0e29-3611-4a2c-aacb-1004273fcf9e

Abstract

Visuomotor rotations are learned through a combination of explicit strategy and implicit recalibration. However, measuring the relative contribution of each remains a challenge and the possibility of multiple explicit and implicit components complicates the issue. Recent interest has focused on the possibility that eye movements reflects explicit strategy. Here we compared eye movements during adaptation to two accepted measures of explicit learning: verbal report and the exclusion test. We found that while reporting, all subjects showed a match among all three measures. However, when subjects did not report their intention, the eye movements of some subjects suggested less explicit adaptation than what was measured in an exclusion test. Interestingly, subjects whose eye movements did match their exclusion could be clustered into the following two subgroups: fully implicit learners showing no evidence of explicit adaptation and explicit learners with little implicit adaptation. Subjects showing a mix of both explicit and implicit adaptation were also those where eye movements showed less explicit adaptation than did exclusion. Thus, our results support the idea of multiple components of explicit learning as only part of the explicit learning is reflected in the eye movements. Individual subjects may use explicit components that are reflected in the eyes or those that are not or some mixture of the two. Analysis of reaction times suggests that the explicit components reflected in the eye movements involve longer reaction times. This component, according to recent literature, may be related to mental rotation.

]]>
<![CDATA[Evaluating the Burstlet Theory of Inspiratory Rhythm and Pattern Generation]]> https://www.researchpad.co/article/N293c9188-38c6-40b9-9809-266fe7ff0443

Abstract

The preBötzinger complex (preBötC) generates the rhythm and rudimentary motor pattern for inspiratory breathing movements. Here, we test “burstlet” theory (Kam et al., 2013a), which posits that low amplitude burstlets, subthreshold from the standpoint of inspiratory bursts, reflect the fundamental oscillator of the preBötC. In turn, a discrete suprathreshold process transforms burstlets into full amplitude inspiratory bursts that drive motor output, measurable via hypoglossal nerve (XII) discharge in vitro. We recap observations by Kam and Feldman in neonatal mouse slice preparations: field recordings from preBötC demonstrate bursts and concurrent XII motor output intermingled with lower amplitude burstlets that do not produce XII motor output. Manipulations of excitability affect the relative prevalence of bursts and burstlets and modulate their frequency. Whole-cell and photonic recordings of preBötC neurons suggest that burstlets involve inconstant subsets of rhythmogenic interneurons. We conclude that discrete rhythm- and pattern-generating mechanisms coexist in the preBötC and that burstlets reflect its fundamental rhythmogenic nature.

]]>
<![CDATA[Predicted Position Error Triggers Catch-Up Saccades during Sustained Smooth Pursuit]]> https://www.researchpad.co/article/Na74d072e-f514-495a-a9e5-1e2152bd77e3

Abstract

For humans, visual tracking of moving stimuli often triggers catch-up saccades during smooth pursuit. The switch between these continuous and discrete eye movements is a trade-off between tolerating sustained position error (PE) when no saccade is triggered or a transient loss of vision during the saccade due to saccadic suppression. de Brouwer et al. (2002b) demonstrated that catch-up saccades were less likely to occur when the target re-crosses the fovea within 40–180 ms. To date, there is no mechanistic explanation for how the trigger decision is made by the brain. Recently, we proposed a stochastic decision model for saccade triggering during visual tracking (Coutinho et al., 2018) that relies on a probabilistic estimate of predicted PE (PEpred). Informed by model predictions, we hypothesized that saccade trigger time length and variability will increase when pre-saccadic predicted errors are small or visual uncertainty is high (e.g., for blurred targets). Data collected from human participants performing a double step-ramp task showed that large pre-saccadic PEpred (>10°) produced short saccade trigger times regardless of the level of uncertainty while saccade trigger times preceded by small PEpred (<10°) significantly increased in length and variability, and more so for blurred targets. Our model also predicted increased signal-dependent noise (SDN) as retinal slip (RS) increases; in our data, this resulted in longer saccade trigger times and more smooth trials without saccades. In summary, our data supports our hypothesized predicted error-based decision process for coordinating saccades during smooth pursuit.

]]>
<![CDATA[Electroencephalographic Signatures of the Neural Representation of Speech during Selective Attention]]> https://www.researchpad.co/article/Na0742e59-95b8-4c35-ba95-9b75647b6dc2

Abstract

The ability to selectively attend to speech in the presence of other competing talkers is critical for everyday communication; yet the neural mechanisms facilitating this process are poorly understood. Here, we use electroencephalography (EEG) to study how a mixture of two speech streams is represented in the brain as subjects attend to one stream or the other. To characterize the speech-EEG relationships and how they are modulated by attention, we estimate the statistical association between each canonical EEG frequency band (delta, theta, alpha, beta, low-gamma, and high-gamma) and the envelope of each of ten different frequency bands in the input speech. Consistent with previous literature, we find that low-frequency (delta and theta) bands show greater speech-EEG coherence when the speech stream is attended compared to when it is ignored. We also find that the envelope of the low-gamma band shows a similar attention effect, a result not previously reported with EEG. This is consistent with the prevailing theory that neural dynamics in the gamma range are important for attention-dependent routing of information in cortical circuits. In addition, we also find that the greatest attention-dependent increases in speech-EEG coherence are seen in the mid-frequency acoustic bands (0.5–3 kHz) of input speech and the temporal-parietal EEG sensors. Finally, we find individual differences in the following: (1) the specific set of speech-EEG associations that are the strongest, (2) the EEG and speech features that are the most informative about attentional focus, and (3) the overall magnitude of attentional enhancement of speech-EEG coherence.

]]>
<![CDATA[Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State]]> https://www.researchpad.co/article/5bd41464d5eed0c4847ccc05

Visual Abstract

]]>
<![CDATA[Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis]]> https://www.researchpad.co/article/5b3b99b0463d7e1385e64e84

Abstract

Topography in the avian cochlear nucleus magnocellularis (NM) is represented as gradually increasing characteristic frequency (CF) along the caudolateral-to-rostromedial axis. In this study, we characterized the organization and cell biophysics of the caudolateral NM (NMc) in chickens (Gallus gallus). Examination of cellular and dendritic architecture first revealed that NMc contains small neurons and extensive dendritic processes, in contrast to adendritic, large neurons located more rostromedially. Individual dye-filling study further demonstrated that NMc is divided into two subregions, with NMc2 neurons having larger and more complex dendritic fields than NMc1. Axonal tract tracing studies confirmed that NMc1 and NMc2 neurons receive afferent inputs from the auditory nerve and the superior olivary nucleus, similar to the adendritic NM. However, the auditory axons synapse with NMc neurons via small bouton-like terminals, unlike the large end bulb synapses on adendritic NM neurons. Immunocytochemistry demonstrated that most NMc2 neurons express cholecystokinin but not calretinin, distinct from NMc1 and adendritic NM neurons that are cholecystokinin negative and mostly calretinin positive. Finally, whole-cell current clamp recordings revealed that NMc neurons require significantly lower threshold current for action potential generation than adendritic NM neurons. Moreover, in contrast to adendritic NM neurons that generate a single-onset action potential, NMc neurons generate multiple action potentials to suprathreshold sustained depolarization. Taken together, our data indicate that NMc contains multiple neuron types that are structurally, connectively, molecularly, and physiologically different from traditionally defined NM neurons, emphasizing specialized neural properties for processing low-frequency sounds.

]]>
<![CDATA[The Effects of Pitch Shifts on Delay-Induced Changes in Vocal Sequencing in a Songbird]]> https://www.researchpad.co/article/5bd41312d5eed0c4847cb3a4

Abstract

Like human speech, vocal behavior in songbirds depends critically on auditory feedback. In both humans and songbirds, vocal skills are acquired by a process of imitation whereby current vocal production is compared to an acoustic target. Similarly, performance in adulthood relies strongly on auditory feedback, and online manipulations of auditory signals can dramatically alter acoustic production even after vocalizations have been well learned. Artificially delaying auditory feedback can disrupt both speech and birdsong, and internal delays in auditory feedback have been hypothesized as a cause of vocal dysfluency in persons who stutter. Furthermore, in both song and speech, online shifts of the pitch (fundamental frequency) of auditory feedback lead to compensatory changes in vocal pitch for small perturbations, but larger pitch shifts produce smaller changes in vocal output. Intriguingly, large pitch shifts can partially restore normal speech in some dysfluent speakers, suggesting that the effects of auditory feedback delays might be ameliorated by online pitch manipulations. Although birdsong provides a promising model system for understanding speech production, the interactions between sensory feedback delays and pitch shifts have not yet been assessed in songbirds. To investigate this, we asked whether the addition of a pitch shift modulates delay-induced changes in Bengalese finch song, hypothesizing that pitch shifts would reduce the effects of feedback delays. Compared with the effects of delays alone, combined delays and pitch shifts resulted in a significant reduction in behavioral changes in one type of sequencing (branch points) but not another (distribution of repeated syllables).

]]>
<![CDATA[Modulation of Complex-Spike Duration and Probability during Cerebellar Motor Learning in Visually Guided Smooth-Pursuit Eye Movements of Monkeys]]> https://www.researchpad.co/article/5b409f2e463d7e5a04eefafd

Abstract

Activation of an inferior olivary neuron powerfully excites Purkinje cells via its climbing fiber input and triggers a characteristic high-frequency burst, known as the complex spike (CS). The theory of cerebellar learning postulates that the CS induces long-lasting depression of the strength of synapses from active parallel fibers onto Purkinje cells, and that synaptic depression leads to changes in behavior. Prior reports showed that a CS on one learning trial is linked to a properly timed depression of simple spikes on the subsequent trial, as well as a learned change in pursuit eye movement. Further, the duration of a CS is a graded instruction for single-trial plasticity and behavioral learning. We now show across multiple learning paradigms that both the probability and duration of CS responses are correlated with the magnitudes of neural and behavioral learning in awake behaving monkeys. When the direction of the instruction for learning repeatedly was in the same direction or alternated directions, the duration and probability of CS responses decreased over a learning block along with the magnitude of trial-over-trial neural learning. When the direction of the instruction was randomized, CS duration, CS probability, and neural and behavioral learning remained stable across time. In contrast to depression, potentiation of simple-spike firing rate for ON-direction learning instructions follows a longer time course and plays a larger role as depression wanes. Computational analysis provides a model that accounts fully for the detailed statistics of a complex set of data.

]]>
<![CDATA[Eye Movements in Darkness Modulate Self-Motion Perception]]> https://www.researchpad.co/article/5bd41414d5eed0c4847cc6a0

Abstract

During self-motion, humans typically move the eyes to maintain fixation on the stationary environment around them. These eye movements could in principle be used to estimate self-motion, but their impact on perception is unknown. We had participants judge self-motion during different eye-movement conditions in the absence of full-field optic flow. In a two-alternative forced choice task, participants indicated whether the second of two successive passive lateral whole-body translations was longer or shorter than the first. This task was used in two experiments. In the first (n = 8), eye movements were constrained differently in the two translation intervals by presenting either a world-fixed or body-fixed fixation point or no fixation point at all (allowing free gaze). Results show that perceived translations were shorter with a body-fixed than a world-fixed fixation point. A linear model indicated that eye-movement signals received a weight of ∼25% for the self-motion percept. This model was independently validated in the trials without a fixation point (free gaze). In the second experiment (n = 10), gaze was free during both translation intervals. Results show that the translation with the larger eye-movement excursion was judged more often to be larger than chance, based on an oculomotor choice probability analysis. We conclude that eye-movement signals influence self-motion perception, even in the absence of visual stimulation.

]]>