ResearchPad - separation-processes https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Analytical performance of thrombospondin-1 and cathepsin D immunoassays part of a novel CE-IVD marked test as an aid in the diagnosis of prostate cancer]]> https://www.researchpad.co/article/elastic_article_15745 The Prostate Specific Antigen (PSA) test suffers from low specificity for the diagnosis of Prostate Cancer (PCa). We originally discovered two cancer-related proteins thrombospondin-1 (THBS1) and cathepsin D (CTSD) using a mass-spectrometry-based proteomics approach. The two serum proteins were shown to improve the diagnosis of high-grade PCa. Thus, we developed quantitative ELISAs for the determination of their concentration in human serum. Here we report their analytical performance in terms of limit of detection, specificity, precision, linearity and interferences, which were determined based on CLSI guidelines. Further, we investigated the influence of pre-analytical factors on concentration measurements. For this, blood from 4–6 donors was collected in different tubes and stored at room temperature for different times prior to centrifugation at different centrifugal forces and temperatures. Stability of THBS1 and CTSD under different storage temperatures was also evaluated. Our results show that the assays are specific, linear and sensitive enough to allow measurement of clinical samples. Precision in terms of repeatability and total within-laboratory coefficient of variation (CV) are 5.5% and 8.1% for THBS1 and 4.3% and 7.2% for CTSD, respectively. Relative laboratory-to-laboratory differences were -6.3% for THBS1 and -3% for CTSD. Both THBS1 and CTSD were stable in serum samples, with 80–120% recoveries of concentrations across donors, sample preparation and storage. In conclusion, the ELISAs as part of the novel commercial in vitro diagnostic test Proclarix are suitable for the use in clinical practice. THBS1 and CTSD can be accurately measured for their intended use independent of the lot and laboratory when conditions consistent with routine practice for PSA sampling and storage are used.

]]>
<![CDATA[Seed germination of <i>Bidens subalternans</i> DC. exposed to different environmental factors]]> https://www.researchpad.co/article/elastic_article_14560 Bidens subalternans DC. is a weed found in several tropical countries such as Brazil. Large number of produced seeds and easy dispersion favor the colonization of agricultural fields by this species. To know the factors that affect the germination of B. subalternans can help to understand its ecology, permitting to develop control strategies. Laboratory experiments were carried out to evaluate how the temperature, photoperiod, burial depth, water deficit, and salt stress affect the seed germination of B. subalternans. The means of the treatments of each experiment were shown in scatter plots with the bars indicating the least significant difference (LSD, p≤0.05). The results showed a germination percentage above 77% for a wide alternating temperature (15/20 C to 30/35 C night/day). The highest germination and uniformity occurred at 25/30°C night/day. Only 11% of the seeds germinated at a temperature of 35/40°C night/day. The deeper burial of seeds reduced their germination. Only 17% of the seeds germinated in darkness conditions. However, in constant light and 12 hours of light/dark conditions the germination percentage was over 96%, confirming the light dependence of the B. subalternans during germination. In constant light and 12 hours of light/dark, the germination was over 96%. B. subalternans seeds showed sensitivity to water and salt stress, and their germination was inhibited under a water potential of -0.4 MPa and 100.09 mM, respectively. The sensitivity of B. subalternans seeds to high temperatures, water stress, and salt stress explains the high frequency of this weed in south-central Brazil. The light and sowing depth showed that burial of seeds by mechanical control is a strategy to reduce the high infestation of B. subalternans.

]]>
<![CDATA[NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies]]> https://www.researchpad.co/article/5c92b379d5eed0c4843a4107

The microtubule (MT) associated protein Tau is instrumental for the regulation of MT assembly and dynamic instability, orchestrating MT-dependent cellular processes. Aberration in Tau post-translational modifications ratio deviation of spliced Tau isoforms 3 or 4 MT binding repeats (3R/4R) have been implicated in neurodegenerative tauopathies. Activity-dependent neuroprotective protein (ADNP) is vital for brain formation and cognitive function. ADNP deficiency in mice causes pathological Tau hyperphosphorylation and aggregation, correlated with impaired cognitive functions. It has been previously shown that the ADNP-derived peptide NAP protects against ADNP deficiency, exhibiting neuroprotection, MT interaction and memory protection. NAP prevents MT degradation by recruitment of Tau and end-binding proteins to MTs and expression of these proteins is required for NAP activity. Clinically, NAP (davunetide, CP201) exhibited efficacy in prodromal Alzheimer’s disease patients (Tau3R/4R tauopathy) but not in progressive supranuclear palsy (increased Tau4R tauopathy). Here, we examined the potential preferential interaction of NAP with 3R vs. 4R Tau, toward personalized treatment of tauopathies. Affinity-chromatography showed that NAP preferentially interacted with Tau3R protein from rat brain extracts and fluorescence recovery after photobleaching assay indicated that NAP induced increased recruitment of human Tau3R to MTs under zinc intoxication, in comparison to Tau4R. Furthermore, we showed that NAP interaction with tubulin (MTs) was inhibited by obstruction of Tau-binding sites on MTs, confirming the requirement of Tau-MT interaction for NAP activity. The preferential interaction of NAP with Tau3R may explain clinical efficacy in mixed vs. Tau4R pathologies, and suggest effectiveness in Tau3R neurodevelopmental disorders.

]]>
<![CDATA[Effects of amotosalen treatment on human platelet lysate bioactivity: A proof-of-concept study]]> https://www.researchpad.co/article/Ne8e94533-b9bd-43e3-83be-324d5eb7ad87

Background

Clinical application of mesenchymal stromal cells (MSCs) usually requires an in vitro expansion step to reach clinically relevant numbers. In vitro cell expansion necessitates supplementation of basal mammalian cell culture medium with growth factors. To avoid using supplements containing animal substances, human platelet lysates (hPL) produced from expired and pathogen inactivated platelet concentrates can be used in place of fetal bovine serum. However, globally, most transfusion units are currently not pathogen inactivated. As blood banks are the sole source of platelet concentrates for hPL production, it is important to ensure product safety and standardized production methods. In this proof-of-concept study we assessed the feasibility of producing hPL from expired platelet concentrates with pathogen inactivation applied after platelet lysis by evaluating the retention of growth factors, cytokines, and the ability to support MSC proliferation and tri-lineage differentiation.

Methodology/Principal findings

Bone marrow-derived MSCs (BM-MSCs) were expanded and differentiated using hPL derived from pathogen inactivated platelet lysates (hPL-PIPL), with pathogen inactivation by amotosalen/ultraviolet A treatment applied after lysis of expired platelets. Results were compared to those using hPL produced from conventional expired pathogen inactivated platelet concentrates (hPL-PIPC), with pathogen inactivation applied after blood donation. hPL-PIPL treatment had lower concentrations of soluble growth factors and cytokines than hPL-PIPC treatment. When used as supplementation in cell culture, BM-MSCs proliferated at a reduced rate, but more consistently, in hPL-PIPL than in hPL-PIPC. The ability to support tri-lineage differentiation was comparable between lysates.

Conclusion/Significance

These results suggest that functional hPL can be produced from expired and untreated platelet lysates by applying pathogen inactivation after platelet lysis. When carried out post-expiration, pathogen inactivation may provide a valuable solution for further standardizing global hPL production methods, increasing the pool of starting material, and meeting future demand for animal-free supplements in human cell culturing.

]]>
<![CDATA[An antibody-free sample pretreatment method for osteopontin combined with MALDI-TOF MS/MS analysis]]> https://www.researchpad.co/article/5c990284d5eed0c484b9802d

Osteopontin is an osteoblast-secreted protein with an aspartic acid-rich, highly phosphorylated, and glycosylated structure. Osteopontin can easily bind to integrins, tumor cells, extracellular matrix and calcium, and is related to bone diseases, various cancers, inflammation etc. Here, DEAE-Cibacron blue 3GA was used to extract recombinant osteopontin from human plasma, and to deplete abundant plasma proteins with an antibody-free method. Using selected buffer systems, osteopontin and human serum albumin could be bound to DEAE-Cibacron blue 3GA, while immunoglobulin G was excluded. The bound osteopontin could then be separated from albumin by using different sequential elution buffers. By this method, 1 μg/mL recombinant osteopontin could be separated from the major part of the most abundant proteins in human plasma. After trypsin digestion, the extracted osteopontin could be successfully detected and identified by MALDI-TOF MS/MS using the m/z 1854.898 peptide and its fragments.

]]>
<![CDATA[Molecular features of steroid-binding antidins and their use for assaying serum progesterone]]> https://www.researchpad.co/article/5c76fe5fd5eed0c484e5b998

Chicken avidin (Avd) and streptavidin from Streptomyces avidinii are extensively used in bionanotechnology due to their extremely tight binding to biotin (Kd ~ 10−15 M for chicken Avd). We previously reported engineered Avds known as antidins, which have micro- to nanomolar affinities for steroids, non-natural ligands of Avd. Here, we report the 2.8 Å X-ray structure of the sbAvd-2 (I117Y) antidin co-crystallized with progesterone. We describe the creation of new synthetic phage display libraries and report the experimental as well as computational binding analysis of progesterone-binding antidins. We introduce a next-generation antidin with 5 nM binding affinity for progesterone, and demonstrate the use of antidins for measuring progesterone in serum samples. Our data give insights on how to engineer and alter the binding preferences of Avds and to develop better molecular tools for modern bionanotechnological applications.

]]>
<![CDATA[The growing pains of physician-administration relationships in an academic medical center and the effects on physician engagement]]> https://www.researchpad.co/article/5c6dc9c0d5eed0c48452a138

Background

Physician engagement has become a key metric for healthcare leadership and is associated with better healthcare outcomes. However, engagement tends to be low and difficult to measure and improve. This study sought to efficiently characterize the professional cultural dynamics between physicians and administrators at an academic hospital and how those dynamics affect physician engagement.

Materials and methods

A qualitative mixed methods analysis was completed in 6 weeks, consisting of a preliminary analysis of the hospital system’s history that was used to purposefully recruit 20 physicians across specialties and 20 healthcare administrators across management levels for semi-structured interviews and observation. Participation rates of 77% (20/26) and 83% (20/24) were achieved for physicians and administrators, respectively. Cohorts consisted of equal numbers of men and women with experience ranging from 1 to 35 years within the organization. Field notes and transcripts were systematically analyzed using an iterative inductive-deductive approach. Emergent themes were presented and discussed with approximately 400 physicians and administrators within the organization to assess validity and which results were most meaningful.

Results & discussion

This investigation indicated a professional cultural disconnect was undermining efforts to improve physician engagement. This disconnect was further complicated by a minority (10%) not believing an issue existed and conflicting connotations not readily perceived by participants who often offered similar solutions. Physicians and administrators felt these results accurately reflected their realities and used this information as a common language to plan targeted interventions to improve physician engagement. Limitations of the study included its cross-sectional nature with a modest sample size at a single institution.

Conclusions

A qualitative mixed methods analysis efficiently identified professional cultural barriers within an academic hospital to serve as an institution-specific guide to improving physician engagement.

]]>
<![CDATA[Novel site-specific PEGylated L-asparaginase]]> https://www.researchpad.co/article/5c6c7587d5eed0c4843cfe5d

L-asparaginase (ASNase) from Escherichia coli is currently used in some countries in its PEGylated form (ONCASPAR, pegaspargase) to treat acute lymphoblastic leukemia (ALL). PEGylation refers to the covalent attachment of poly(ethylene) glycol to the protein drug and it not only reduces the immune system activation but also decreases degradation by plasmatic proteases. However, pegaspargase is randomly PEGylated and, consequently, with a high degree of polydispersity in its final formulation. In this work we developed a site-specific N-terminus PEGylation protocol for ASNase. The monoPEG-ASNase was purified by anionic followed by size exclusion chromatography to a final purity of 99%. The highest yield of monoPEG-ASNase of 42% was obtained by the protein reaction with methoxy polyethylene glycol-carboxymethyl N-hydroxysuccinimidyl ester (10kDa) in 100 mM PBS at pH 7.5 and PEG:ASNase ratio of 25:1. The monoPEG-ASNase was found to maintain enzymatic stability for more days than ASNase, also was resistant to the plasma proteases like asparaginyl endopeptidase and cathepsin B. Additionally, monoPEG-ASNase was found to be potent against leukemic cell lines (MOLT-4 and REH) in vitro like polyPEG-ASNase. monoPEG-ASNase demonstrates its potential as a novel option for ALL treatment, being an inventive novelty that maintains the benefits of the current enzyme and solves challenges.

]]>
<![CDATA[Expression, purification and characterization of the dimeric protruding domain of Macrobrachium rosenbergii nodavirus capsid protein expressed in Escherichia coli]]> https://www.researchpad.co/article/5c5df342d5eed0c484581038

Macrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which seriously impedes the production of the giant freshwater prawn and has a major economic impact. MrNV contains two segmented RNA molecules, which encode the RNA dependent RNA polymerase (RdRp) and the capsid protein (MrNV-CP) containing 371 amino acid residues. MrNV-CP comprises of the Shell (S) and the Protruding (P) domains, ranging from amino acid residues 1–252 and 253–371, respectively. The P-domain assembles into dimeric protruding spikes, and it is believed to be involved in host cell attachment and internalization. In this study, the recombinant P-domain of MrNV-CP was successfully cloned and expressed in Escherichia coli, purified with an immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) up to ~90% purity. Characterization of the purified recombinant P-domain with SEC revealed that it formed dimers, and dynamic light scattering (DLS) analysis demonstrated that the hydrodynamic diameter of the dimers was ~6 nm. Circular dichroism (CD) analysis showed that the P-domain contained 67.9% of beta-sheets, but without alpha-helical structures. This is in good agreement with the cryo-electron microscopic analysis of MrNV which demonstrated that the P-domain contains only beta-stranded structures. Our findings of this study provide essential information for the production of the P-domain of MrNV-CP that will aid future studies particularly studies that will shed light on anti-viral drug discovery and provide an understanding of virus-host interactions and the viral pathogenicity.

]]>
<![CDATA[Quality and quantity of dromedary camel DNA sampled from whole-blood, saliva, and tail-hair]]> https://www.researchpad.co/article/5c5ca302d5eed0c48441efd7

Camels are livestock with unique adaptations to hot-arid regions. To effectively study camel traits, a biobank of camel DNA specimens with associated biological information is needed. We examined whole-blood, saliva (buccal swabs), and tail-hair follicle samples to determine which is the best source for establishing a DNA biobank. We inspected five amounts of each of whole-blood, buccal swabs, and tail-hair follicles in nine camels, both qualitatively via gel electrophoresis and quantitatively using a NanoDrop spectrophotometer. We also tested the effects of long term-storage on the quality and quantity of DNA, and measured the rate of degradation, by analyzing three buccal swab samples and 30 tail-hair follicles over a period of nine months. Good quality DNA, in the form of visible large size DNA bands, was extracted from all three sources, for all five amounts. The five volumes of whole-blood samples (20–100μl) provided ~0.4–3.6 μg, the five quantities of buccal swabs (1–5) produced ~0.1–12 μg, while the five amounts of tail-hair follicles (10–50) resulted in ~0.7–25 μg. No differences in the rate of degradation of buccal swab and tail-hair follicle DNA were detected, but there was clearly greater deterioration in the quality of DNA extracted from buccal swabs when compared to tail-hair follicles. We recommend using tail-hair samples for camel DNA biobanking, because it resulted in both an adequate quality and quantity of DNA, along with its ease of collection, transportation, and storage. Compared to its success in studies of other domesticated animals, we anticipate that using ~50 tail-hair follicles will provide sufficient DNA for sequencing or SNP genotyping.

]]>
<![CDATA[Protein refolding based on high hydrostatic pressure and alkaline pH: Application on a recombinant dengue virus NS1 protein]]> https://www.researchpad.co/article/5c6448dbd5eed0c484c2f04f

In this study we evaluated the association of high hydrostatic pressure (HHP) and alkaline pH as a minimally denaturing condition for the solubilization of inclusion bodies (IBs) generated by recombinant proteins expressed by Escherichia coli strains. The method was successfully applied to a recombinant form of the dengue virus (DENV) non-structural protein 1 (NS1). The minimal pH for IBs solubilization at 1 bar was 12 while a pH of 10 was sufficient for solubilization at HHP: 2.4 kbar for 90 min and 0.4 kbar for 14 h 30 min. An optimal refolding condition was achieved by compression of IBs at HHP and pH 10.5 in the presence of arginine, oxidized and reduced glutathiones, providing much higher yields (up to 8-fold) than association of HHP and GdnHCl via an established protocol. The refolded NS1, 109 ± 9.5 mg/L bacterial culture was recovered mainly as monomer and dimer, corresponding up to 90% of the total protein and remaining immunologically active. The proposed conditions represent an alternative for the refolding of immunologically active recombinant proteins expressed as IBs.

]]>
<![CDATA[In vivo assembly and large-scale purification of a GPCR - Gα fusion with Gβγ, and characterization of the active complex]]> https://www.researchpad.co/article/5c3e5017d5eed0c484d7d26f

G protein coupled receptors (GPCRs) are central players in recognizing a variety of stimuli to mediate diverse cellular responses. This myriad of functions is accomplished by their modular interactions with downstream intracellular transducers, such as heterotrimeric G proteins and arrestins. Assembling a specific GPCR–G protein pair as a purified complex for their structural and functional investigations remains a challenging task, however, because of the low affinity of the interaction. Here, we optimized fusion constructs of the Gα subunit of the heterotrimeric G protein and engineered versions of rat Neurotensin receptor 1 (NTR1), coexpressed and assembled in vivo with Gβ and Gγ. This was achieved by using the baculovirus-based MultiBac system. We thus generated a functional receptor–G protein fusion complex, which can be efficiently purified using ligand-based affinity chromatography on large scales. Additionally, we utilized a purification method based on a designed ankyrin repeat protein tightly binding to Green Fluorescent Protein (GFP-DARPin) that may be used as a generic approach for a large-scale purification of GPCR–G protein fusion complexes for which no ligands column can be generated. The purification methods described herein will support future studies that aim to understand the structural and functional framework of GPCR activation and signaling.

]]>
<![CDATA[Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma]]> https://www.researchpad.co/article/5c141e9bd5eed0c484d27646

We introduce the CDRP (Concatenated Diagnostic-Relapse Prognostic) architecture for multi-task deep learning that incorporates a clinical algorithm, e.g., a risk stratification schema to improve prognostic profiling. We present the first application to survival prediction in High-Risk (HR) Neuroblastoma from transcriptomics data, a task that studies from the MAQC consortium have shown to remain the hardest among multiple diagnostic and prognostic endpoints predictable from the same dataset. To obtain a more accurate risk stratification needed for appropriate treatment strategies, CDRP combines a first component (CDRP-A) synthesizing a diagnostic task and a second component (CDRP-N) dedicated to one or more prognostic tasks. The approach leverages the advent of semi-supervised deep learning structures that can flexibly integrate multimodal data or internally create multiple processing paths. CDRP-A is an autoencoder trained on gene expression on the HR/non-HR risk stratification by the Children’s Oncology Group, obtaining a 64-node representation in the bottleneck layer. CDRP-N is a multi-task classifier for two prognostic endpoints, i.e., Event-Free Survival (EFS) and Overall Survival (OS). CDRP-A provides the HR embedding input to the CDRP-N shared layer, from which two branches depart to model EFS and OS, respectively. To control for selection bias, CDRP is trained and evaluated using a Data Analysis Protocol (DAP) developed within the MAQC initiative. CDRP was applied on Illumina RNA-Seq of 498 Neuroblastoma patients (HR: 176) from the SEQC study (12,464 Entrez genes) and on Affymetrix Human Exon Array expression profiles (17,450 genes) of 247 primary diagnostic Neuroblastoma of the TARGET NBL cohort. On the SEQC HR patients, CDRP achieves Matthews Correlation Coefficient (MCC) 0.38 for EFS and MCC = 0.19 for OS in external validation, improving over published SEQC models. We show that a CDRP-N embedding is indeed parametrically associated to increasing severity and the embedding can be used to better stratify patients’ survival.

]]>
<![CDATA[Impact of hemodialysis on cardiovascular system assessed by pulse wave analysis]]> https://www.researchpad.co/article/5be5fb88d5eed0c484f6cf3f

Valuable information about cardiovascular system can be derived from the shape of aortic pulse wave being the result of reciprocal interaction between heart and vasculature. Pressure profiles in ascending aorta were obtained from peripheral waveforms recorded non-invasively (SphygmoCor, AtCor Medical, Australia) before, during and after hemodialysis sessions performed after 3-day and 2-day interdialytic intervals in 35 anuric, prevalent hemodialysis patients. Fluid status was assessed by Body Composition Monitor (Fresenius Medical Care, Bad Homburg, Germany) and online hematocrit monitoring device (CritLine, HemaMetrics, Utah). Systolic pressure and ejection duration decreased during dialysis. Augmentation index remained stable at 30 ± 13% throughout hemodialysis session despite the decrease of augmented pressure and pulse height. Subendocardial viability ratio (SEVR) determined after 3-day and 2-day interdialytic intervals increased during the sessions by 43.8 ± 26.6% and 26.1 ± 25.4%, respectively. Hemodialysis performed after 3-day and 2-day interdialytic periods reduced significantly overhydration by 2.4 ± 1.0 L and 1.8 ± 1.2 L and blood volume by 16.3 ± 9.7% and 13.7 ± 8.9%, respectively. Intradialytic increase of SEVR correlated with ultrafiltration rate (R = 0.39, p-value < 0.01), reduction in overhydration (R = -0.57, p-value < 0.001) and blood volume drop (R = -0.38, p-value < 0.01). The strong correlation between the decrease of overhydration during hemodialysis and increase in SEVR confirmed that careful fluid management is crucial for proper cardiac function. Hemodialysis affected cardiovascular system with the parameters derived from pulse-wave-analysis (systolic and augmented pressures, pulse height, ejection duration, SEVR) being significantly different at the end of dialysis from those before the session. Combination of pulse-wave-analysis with the monitoring of overhydration provides a new insight into the impact of hemodialysis on cardiovascular system.

]]>
<![CDATA[An integrated characterization of Picea abies industrial bark regarding chemical composition, thermal properties and polar extracts activity]]> https://www.researchpad.co/article/5c06f03cd5eed0c484c6d494

The present work determines the chemical and thermal characteristics as well as the phytochemical and antioxidant potential of the polar extractives of the Picea abies bark from an industrial mill, their wood and bark components and also different bark fractions obtained by mechanical fractionation (fine B1, Φ<0.180 mm, medium B3, 0.450 < Φ<0.850 mm and coarse B6, 2 < Φ<10 mm). The aim is to increase the knowledge on the Picea abies bark to better determine possible uses other than burning for energy production and to test an initial size reduction process to achieve fractions with different characteristics. Compared to wood, bark presented similar lignin (27%), higher mineral (3.9% vs 0.4%) and extractives (20.3% vs 3.8%) and lower polysaccharides (48% vs 71%) contents. Regarding bark fractions the fines showed higher ash (6.3%), extractives (25%) and lignin (29%) than the coarse fraction (3.9%, 19% and 25% respectively). Polysaccharide contents increased with particle size of the bark fractions (38% vs 52% for B1 and B6) but showed the same relative composition. The phytochemical profile of ethanol and water extracts presented higher contents for bark than wood of total phenols (2x higher), flavonoids (3x higher) and tannins (4-10x higher) with an increasing tendency with particle size. Bark antioxidant activity was higher than that of wood for ferric-reducing antioxidant power (FRAP, 10 vs 6 mmolFe2+/gExt for the ethanol extract) and free radical scavenging activity (DPPH, 6 vs 18 mg/L IC50 for the ethanol extract) methods. The different bark fractions antioxidant activity was very similar. Bark thermal properties showed a much lower volatiles to fixed carbon ratio (V/FC) than wood (3.1 vs 5.2) although the same higher heating value (20.3 MJ/kg). The fractions were quite similar. Bark presented chemical features that point to their possible upgrade, whether by taking advantage of the high extractives with bioactive compounds or the production potential for hemicellulose-derived oligomers with possible use in nutraceutical and pharmaceutical industries.

]]>
<![CDATA[Efficient and reproducible experimental infections of rats with Blastocystis spp.]]> https://www.researchpad.co/article/5bfc6279d5eed0c484ec97f4

Although Blastocystis spp. infect probably more than 1 billion people worldwide, their clinical significance is still controversial and their pathophysiology remains poorly understood. In this study, we describe a protocol for an efficient and reproducible model of chronic infection in rats, laying the groundwork for future work to evaluate the pathogenic potential of this parasite. In our experimental conditions, we were unable to infect rats using vacuolar forms of an axenically cultivated ST4 isolate, but we successfully established chronic infections of 4 week-old rats after oral administration of both ST3 and ST4 purified cysts isolated from human stool samples. The infection protocol was also applied to 4 week-old C57BL/9, BALB/C and C3H mice, but any mouse was found to be infected by Blastocystis. Minimal cyst inoculum required for rat infection was higher with ST3 (105) than with ST4 (102). These results were confirmed by co-housing experiments highlighting a higher contagious potential of ST4 in rats compared to ST3. Finally, experiments mimicking fecal microbiota transfer from infected to healthy animals showed that Blastocystis spp. could easily infect a new host, even though its intestinal microbiota is not disturbed. In conclusion, our results provide a well-documented and robust rat model of Blastocystis chronic infection, reproducing “natural” infection. This model will be of great interest to study host parasite interactions and to better evaluate clinical significance of Blastocystis.

]]>
<![CDATA[Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing]]> https://www.researchpad.co/article/5b28b271463d7e11c3009599

During pregnancy, the placenta protects the fetus against the maternal immune response, as well as bacterial and viral pathogens. Bacterial pathogens that have evolved specific mechanisms of breaching this barrier, such as Listeria monocytogenes, present a unique opportunity for learning how the placenta carries out its protective function. We previously identified the L. monocytogenes protein Internalin P (InlP) as a secreted virulence factor critical for placental infection. Here, we show that InlP, but not the highly similar L. monocytogenes internalin Lmo2027, binds to human afadin (encoded by AF-6), a protein associated with cell-cell junctions. A crystal structure of InlP reveals several unique features, including an extended leucine-rich repeat (LRR) domain with a distinctive Ca2+-binding site. Despite afadin’s involvement in the formation of cell-cell junctions, MDCK epithelial cells expressing InlP displayed a decrease in the magnitude of the traction stresses they could exert on deformable substrates, similar to the decrease in traction exhibited by AF-6 knock-out MDCK cells. L. monocytogenes ΔinlP mutants were deficient in their ability to form actin-rich protrusions from the basal face of polarized epithelial monolayers, a necessary step in the crossing of such monolayers (transcytosis). A similar phenotype was observed for bacteria expressing an internal in-frame deletion in inlP (inlP ΔLRR5) that specifically disrupts its interaction with afadin. However, afadin deletion in the host cells did not rescue the transcytosis defect. We conclude that secreted InlP targets cytosolic afadin to specifically promote L. monocytogenes transcytosis across the basal face of epithelial monolayers, which may contribute to the crossing of the basement membrane during placental infection.

]]>
<![CDATA[Truncated Bovine Integrin Alpha-v/Beta-6 as a Universal Capture Ligand for FMD Diagnosis]]> https://www.researchpad.co/article/5989da6eab0ee8fa60b93c4d

Foot-and-mouth disease (FMD) is endemic in many regions of the world and is one of the most prevalent epizootic animal diseases. FMD affects livestock, such as cattle, sheep, goats and pigs, and causes enormous economic losses due to reduced productivity and trade restrictions. Preparedness and early diagnosis are essential for effective control of FMD. Many diagnostic assays are dependent on raising high-affinity, anti-FMD virus (FMDV) serotype-specific antibodies in small animals (rabbits and guinea pigs) that give broad virus coverage. Here we show that soluble, truncated forms of bovine αvβ6 bind FMDV in an authentic RGD and divalent cation dependent interaction and can be used as the trapping reagent in a FMDV sandwich ELISA. In addition, inclusion of FLAG or His tags facilitates simple purification without the loss of virus binding. We also provide evidence that when combined with a guinea pig polyclonal serum, or serotype-specific monoclonal antibodies, the integrin can be used to detect viruses representative of all FMDV serotypes. We also show that recombinant FMDV empty capsids, with stabilising disulphide bonds, can serve as an antigen in the ELISA and can therefore replace inactivated virus antigen as a positive control for the assay. Our results demonstrate the potential use of bovine αvβ6 and FMDV empty capsids in FMD diagnostic assays.

]]>
<![CDATA[A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections]]> https://www.researchpad.co/article/5989daddab0ee8fa60bba5b8

We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. This platform has great potential in both medical diagnostics and research applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.

]]>
<![CDATA[Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains]]> https://www.researchpad.co/article/5989daa2ab0ee8fa60ba6227

Background

It has been predicted that the global temperature will rise in the future, which means crops including sorghum will likely be grown under higher temperatures, and consequently may affect the nutritional properties.

Methods

The effects of two growth temperatures (OT, day/night 32/21°C; HT 38/21°C) on tannin, phytate, mineral, and in vitro iron availability of raw and cooked grains (as porridge) of six sorghum genotypes were investigated.

Results

Tannin content significantly decreased across all sorghum genotypes under high growth temperature (P ≤0.05), while the phytate and mineral contents maintained the same level, increased or decreased significantly, depending on the genotype. The in vitro iron availability in most sorghum genotypes was also significantly reduced under high temperature, except for Ai4, which showed a pronounced increase (P ≤0.05). The cooking process significantly reduced tannin content in all sorghum genotypes (P ≤0.05), while the phytate content and in vitro iron availability were not significantly affected.

Conclusions

This research provides some new information on sorghum grain nutritional properties when grown under predicted future higher temperatures, which could be important for humans where sorghum grains are consumed as staple food.

]]>