ResearchPad - skeletal-muscles https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Is postural dysfunction related to sarcopenia? A population-based study]]> https://www.researchpad.co/article/elastic_article_7695 Postural dysfunction is one of the most common community health symptoms and frequent chief complaints in hospitals. Sarcopenia is a syndrome characterized by degenerative loss of skeletal muscle mass, muscle quality, and muscle strength, and is the main contributor to musculoskeletal impairment in the elderly. Previous studies reported that loss of muscle mass is associated with a loss of diverse functional abilities. Meanwhile, there have been limited studies concerning postural dysfunction among older adults with sarcopenia. Although sarcopenia is primarily a disease of the elderly, its development may be associated with conditions that are not exclusively seen in older persons. Also, recent studies recognize that sarcopenia may begin to develop earlier in life. The objective of this paper was to investigate the association between the prevalence of sarcopenia and postural dysfunction in a wide age range of adults using data from a nationally representative cohort study in Korea. Korean National Health & Nutrition Exhibition Survey V (KNHANES V, 2010–2012) data from the fifth cross-sectional survey of the South Korean population performed by the Korean Ministry of Health and Welfare were used. Appendicular skeletal muscle mass (ASM)/height (ht)2 was used to define sarcopenia, and the Modified Romberg test using a foam pad (“foam balance test”) was performed to evaluate postural dysfunction. ASM/ht2 was lower in women and significantly decreased with age in men. Subjects with sarcopenia were significantly more likely to fail the foam balance test, regardless of sex and age. Regression analysis showed a significant relationship between sarcopenia and postural dysfunction (OR: 2.544, 95% CI: 1.683–3.846, p<0.001). Multivariate regression analysis revealed that sarcopenia (OR: 1.747, 95% CI: 1.120–2.720, p = 0.014) and age (OR: 1.131, 95% CI: 1.105–1.158, p<0.001) are independent risk factors for postural instability. In middle age subjects, the adjusted OR for sarcopenia was 3.344 (95% CI: 1.350–8.285) (p = 0.009). The prevalence of postural dysfunction is higher in sarcopenia patients, independent of sex and age.

]]>
<![CDATA[Low relative muscle volume: Correlation with prevalence of venous thromboembolism following total knee arthroplasty]]> https://www.researchpad.co/article/5c8823ced5eed0c484639081

Background

There have been many efforts to find modifiable risk factors for venous thromboembolism (VTE) in the perioperative period of total knee arthroplasty (TKA), while no study has investigated the relationship between the muscle mass and deep vein thrombosis (DVT) or pulmonary embolism frequency following TKA. This study aimed to evaluate the relationship between muscle volume and the prevalence of symptomatic and radiologically confirmed venous thromboembolism (VTE) after total knee arthroplasty (TKA).

Methods

A total of 261 consecutive patients who underwent primary TKA between 2013 and 2015 were enrolled. Computed tomographic venography with pulmonary angiography (CTVPA) was performed between the 5th and 7th postoperative days to assess the presence of VTE. Four parameters of muscle volume at three levels were evaluated on CTVPA: (i) the cross-sectional area of all skeletal muscles (skeletal muscle index) and total psoas area at the level of the third lumbar vertebrae; (ii) the vastus lateralis muscle at the thigh level; and (iii) the posterior crural muscle at the lower leg level. The relationship between the muscle volume at each level and the prevalence of VTE after TKA was evaluated with multivariate adjusted logistic regression models.

Results

The CTVPA scan showed no proximal DVT, and all thrombi were located in muscular, peroneal, and posterior tibial veins. In unilateral TKA, patients with lower muscle volume of the vastus lateralis at the thigh level in the nonoperated limb had significantly higher prevalence of distal DVT in the operated limb (adjusted OR: 2.97 at subclinical DVT revealed by CTVPA and adjusted OR: 2.68 at symptomatic DVT). This finding was also discovered in patients who underwent simultaneous bilateral TKA (adjusted OR: 1.73–2.97 at subclinical DVT and adjusted OR:1.76–1.86 at symptomatic DVT).

Conclusions

The relative muscle volume of the vastus lateralis at the thigh level was negatively associated with the prevalence of symptomatic and radiologically confirmed DVT, suggesting that low thigh muscle mass is an independent risk factor for VTE in the postoperative period of TKA.

]]>
<![CDATA[Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations]]> https://www.researchpad.co/article/5c76fe15d5eed0c484e5b456

Supplementing pig diets with n-3 polyunsaturated fatty acids (n-3 PUFA) may produce meat products with an increased n-3 fatty acid content, and the combined antioxidants addition could prevent lipid oxidation in the feed. However, to date, the effects of these bioactive compounds at the molecular level in porcine skeletal muscle are mostly unknown. This study aimed to analyse changes in the Longissimus thoracis transcriptome of 35 pigs fed three diets supplemented with: linseed (L); linseed, vitamin E and Selenium (LES) or linseed and plant-derived polyphenols (LPE). Pigs were reared from 80.8 ± 5.6 kg to 151.8 ± 9.9 kg. After slaughter, RNA-Seq was performed and 1182 differentially expressed genes (DEGs) were submitted to functional analysis. The L vs LES comparison did not show differences, while L vs LPE showed 1102 DEGs and LES vs LPE 80 DEGs. LPE compared to the other groups showed the highest number of up-regulated genes involved in preserving muscle metabolism and structure. Results enlighten that the combined supplementation of bioactive lipids (n-3 PUFA from linseed) with plant extracts as a source of polyphenols increases, compared to the only addition of linseed, the expression of genes involved in mRNA metabolic processes and transcriptional regulation, glucose uptake and, finally, in supporting muscle development and physiology. These results improve the knowledge of the biological effect of bioactive compounds in Longissimus thoracis muscle, and sustain the growing interest over their use in pig production.

]]>
<![CDATA[The associations of fat tissue and muscle mass indices with all-cause mortality in patients undergoing hemodialysis]]> https://www.researchpad.co/article/5c6dc9bbd5eed0c48452a0c8

Protein-energy wasting, which involves loss of fat and muscle mass, is prevalent and is associated with mortality in hemodialysis (HD) patients. We investigated the associations of fat tissue and muscle mass indices with all-cause mortality in HD patients. The study included 162 patients undergoing HD. The fat tissue index (FTI) and skeletal muscle mass index (SMI), which represent respective tissue masses normalized to height squared, were measured by bioimpedance analysis after dialysis. Patients were divided into the following four groups according to the medians of FTI and SMI values: group 1 (G1), lower FTI and lower SMI; G2, higher FTI and lower SMI; G3, lower FTI and higher SMI; and G4, higher FTI and higher SMI. The associations of the FTI, SMI, and body mass index (BMI) with all-cause mortality were evaluated. During a median follow-up of 2.5 years, 29 patients died. The 5-year survival rates were 48.6%, 76.1%, 95.7%, and 87.4% in the G1, G2, G3, and G4 groups, respectively (P = 0.0002). The adjusted hazard ratio values were 0.34 (95% confidence interval [CI] 0.10–0.95, P = 0.040) for G2 vs. G1, 0.13 (95%CI 0.01–0.69, P = 0.013) for G3 vs. G1, and 0.25 (95%CI 0.07–0.72, P = 0.0092) for G4 vs. G1, respectively. With regard to model discrimination, on adding both FTI and SMI to a model with established risk factors, the C-index increased significantly when compared with the value for a model with BMI (0.763 vs. 0.740, P = 0.016). Higher FTI and/or higher SMI values were independently associated with reduced risks of all-cause mortality in HD patients. Moreover, the combination of the FTI and SMI may more accurately predict all-cause mortality when compared with BMI. Therefore, these body composition indicators should be evaluated simultaneously in this population.

]]>
<![CDATA[Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors]]> https://www.researchpad.co/article/5c63393fd5eed0c484ae6300

Multiple syndromes share congenital heart and craniofacial muscle defects, indicating there is an intimate relationship between the adjacent cardiac and pharyngeal muscle (PM) progenitor fields. However, mechanisms that direct antagonistic lineage decisions of the cardiac and PM progenitors within the anterior mesoderm of vertebrates are not understood. Here, we identify that retinoic acid (RA) signaling directly promotes the expression of the transcription factor Nr2f1a within the anterior lateral plate mesoderm. Using zebrafish nr2f1a and nr2f2 mutants, we find that Nr2f1a and Nr2f2 have redundant requirements restricting ventricular cardiomyocyte (CM) number and promoting development of the posterior PMs. Cre-mediated genetic lineage tracing in nr2f1a; nr2f2 double mutants reveals that tcf21+ progenitor cells, which can give rise to ventricular CMs and PM, more frequently become ventricular CMs potentially at the expense of posterior PMs in nr2f1a; nr2f2 mutants. Our studies reveal insights into the molecular etiology that may underlie developmental syndromes that share heart, neck and facial defects as well as the phenotypic variability of congenital heart defects associated with NR2F mutations in humans.

]]>
<![CDATA[Association of skeletal muscle and serum metabolites with maximum power output gains in response to continuous endurance or high-intensity interval training programs: The TIMES study – A randomized controlled trial]]> https://www.researchpad.co/article/5c6b2666d5eed0c484289a04

Background

Recent studies have begun to identify the molecular determinants of inter-individual variability of cardiorespiratory fitness (CRF) in response to exercise training programs. However, we still have an incomplete picture of the molecular mechanisms underlying trainability in response to exercise training.

Objective

We investigated baseline serum and skeletal muscle metabolomics profile and its associations with maximal power output (MPO) gains in response to 8-week of continuous endurance training (ET) and high-intensity interval training (HIIT) programs matched for total units of exercise performed (the TIMES study).

Methods

Eighty healthy sedentary young adult males were randomized to one of three groups and 70 were defined as completers (> 90% of sessions): ET (n = 30), HIIT (n = 30) and control (CO, n = 10). For the CO, participants were asked to not exercise for 8 weeks. Serum and skeletal muscle samples were analyzed by 1H-NMR spectroscopy. The targeted screens yielded 43 serum and 70 muscle reproducible metabolites (intraclass > 0.75; coefficient of variation < 25%). Associations of baseline metabolites with MPO trainability were explored within each training program via three analytical strategies: (1) correlations with gains in MPO; (2) differences between high and low responders to ET and HIIT; and (3) metabolites contributions to the most significant pathways related to gains in MPO. The significance level was set at P < 0.01 or false discovery rate of 0.1.

Results

The exercise programs generated similar gains in MPO (ET = 21.4 ± 8.0%; HIIT = 24.3 ± 8.5%). MPO associated baseline metabolites supported by all three levels of evidence were: serum glycerol, muscle alanine, proline, threonine, creatinine, AMP and pyruvate for ET, and serum lysine, phenylalanine, creatine, and muscle glycolate for HIIT. The most common pathways suggested by the metabolite profiles were aminoacyl-tRNA biosynthesis, and carbohydrate and amino acid metabolism.

Conclusion

We suggest that MPO gains in both programs are potentially associated with metabolites indicative of baseline amino acid and translation processes with additional evidence for carbohydrate metabolism in ET.

]]>
<![CDATA[Identification of qPCR reference genes suitable for normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy]]> https://www.researchpad.co/article/5c5b525fd5eed0c4842bc6fe

The mdx mouse is the most widely-used animal model of the human disease Duchenne muscular dystrophy, and quantitative PCR analysis of gene expression in the muscles of this animal plays a key role in the study of pathogenesis and disease progression and in evaluation of potential therapeutic interventions. Normalization to appropriate stably-expressed reference genes is essential for accurate quantitative measurement, but determination of such genes is challenging: healthy and dystrophic muscles present very different transcriptional environments, further altering with disease progression and muscle use, raising the possibility that no single gene or combination of genes may be stable under all experimental comparative scenarios. Despite the pedigree of this animal model, this problem remains unaddressed. The aim of this work was therefore to comprehensively assess reference gene suitability in the muscles of healthy and dystrophic mice, identifying reference genes appropriate for specific experimental comparisons, and determining whether an essentially universally-applicable set of genes exists. Using a large sample collection comprising multiple muscles (including the tibialis anterior, diaphragm and heart muscles) taken from healthy and mdx mice at three disease-relevant ages, and a panel of sixteen candidate reference genes (FBXO38, FBXW2, MON2, ZFP91, HTATSF1, GAPDH, ACTB, 18S, CDC40, SDHA, RPL13a, CSNK2A2, AP3D1, PAK1IP1, B2M and HPRT1), we used the geNorm, BestKeeper and Normfinder algorithms to identify genes that were stable under multiple possible comparative scenarios. We reveal that no single gene is stable under all conditions, but a normalization factor derived from multiple genes (RPL13a, CSNK2A2, AP3D1 and the widely-used ACTB) appears suitable for normalizing gene expression in both healthy and dystrophic mouse muscle regardless of muscle type or animal age. We further show that other popular reference genes, including GAPDH, are markedly disease- or muscle-type correlated. This study demonstrates the importance of empirical reference gene identification, and should serve as a valuable resource for investigators wishing to study gene expression in mdx mice.

]]>
<![CDATA[Characterization of a novel microRNA, miR-188, elevated in serum of muscular dystrophy dog model]]> https://www.researchpad.co/article/5c5b525dd5eed0c4842bc6ee

MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at the post-transcriptional level. Several miRNAs are exclusively expressed in skeletal muscle and participate in the regulation of muscle differentiation by interacting with myogenic factors. These miRNAs can be found at high levels in the serum of patients and animal models for Duchenne muscular dystrophy, which is expected to be useful as biomarkers for their clinical conditions. By miRNA microarray analysis, we identified miR-188 as a novel miRNA that is elevated in the serum of the muscular dystrophy dog model, CXMDJ. miR-188 was not muscle-specific miRNA, but its expression was up-regulated in skeletal muscles associated with muscle regeneration induced by cardiotoxin-injection in normal dogs and mice. Manipulation of miR-188 expression using antisense oligo and mimic oligo RNAs alters the mRNA expression of the myogenic regulatory factors, MRF4 and MEF2C. Our results suggest that miR-188 is a new player that participates in the gene regulation process of muscle differentiation and that it may serve as a serum biomarker reflecting skeletal muscle regeneration.

]]>
<![CDATA[Reproducibility and validity of a novel invasive method of assessing peripheral microvascular vasomotor function]]> https://www.researchpad.co/article/5c57e6ddd5eed0c484ef3ffe

In healthy arteries, blood flow is regulated by microvascular tone assessed by changes in blood flow volume and vascular resistance to endothelium-dependent and -independent vasodilators. We developed a novel method of using intravascular ultrasound (IVUS) and a Doppler flow wire to measure changes in blood flow volume and vascular resistance of the profunda arterial bed. We assessed the variability over 6 months in measuring microvascular endothelium-dependent dilation to acetylcholine and endothelium-independent dilation to adenosine in 20 subjects who were part of a larger study of Gulf War Illness without obstructive peripheral artery disease. Vasomotor function was assessed by Infusions of control (dextrose), acetylcholine (10-6M), adenosine (50μg), and nitroglycerin (25μg/ml). 400 IVUS and 240 flow velocity images were measured a mean 6 (SD = 2) months apart blind to measurement and infusion stage. The mean (SD) baseline profunda flow was 227 (172) ml/min and vascular resistance 4.6 x 104 (2.4 x 104) dynes-s/cm5. The intraclass correlation coefficients for 6-month variability for vascular function were excellent (range 0.827–0.995). Bland-Altman analyses showed mean differences of less than 2% for microvascular endothelium-dependent function (flow volume and resistance) and less than 1% for macrovascular endothelium-dependent function with acceptable limits of agreement. In 49 subjects assessing concurrent validity of the technique against atherosclerosis risk factors, we observed greater impairment in microvascular endothelium-dependent function per year of age (flow volume = -1.4% (p = 0.018), vascular resistance = 1.5% (p = 0.015)) and current smoking (flow volume = -36.7% (p = .006), vascular resistance = 50.0% (p<0.001)). This novel method of assessing microvascular vasomotor function had acceptable measurement reproducibility and validity.

]]>
<![CDATA[Nandrolone decanoate administration does not attenuate muscle atrophy during a short period of disuse]]> https://www.researchpad.co/article/5c58d610d5eed0c484031507

Background

A few days of bed rest or immobilization following injury, disease, or surgery can lead to considerable loss of skeletal muscle mass and strength. It has been speculated that such short, successive periods of muscle disuse may be largely responsible for the age-related loss of muscle mass throughout the lifespan.

Objective

To assess whether a single intramuscular injection of nandrolone decanoate prior to immobilization can attenuate the loss of muscle mass and strength in vivo in humans.

Design, setting and participants

Thirty healthy (22 ± 1 years) men were subjected to 7 days of one-legged knee immobilization by means of a full leg cast with (NAD, n = 15) or without (CON, n = 15) prior intramuscular nandrolone decanoate injection (200 mg).

Measures

Before and immediately after immobilization, quadriceps muscle cross-sectional area (CSA) (by means of single-slice computed tomography (CT) scans of the upper leg) and one-legged knee extension strength (one-repetition maximum [1-RM]) were assessed for both legs. Furthermore, muscle biopsies from the immobilized leg were taken before and after immobilization to assess type I and type II muscle fiber cross-sectional area.

Results

Quadriceps muscle CSA decreased during immobilization in both CON and NAD (-6 ± 1% and -6 ± 1%, respectively; main effect of time P<0.01), with no differences between the groups (time × treatment interaction, P = 0.59). Leg muscle strength declined following immobilization (-6 ± 2% in CON and -7 ± 3% in NAD; main effect of time, P<0.05), with no differences between groups (time × treatment interaction, P = 0.55).

Conclusions

This is the first study to report that nandrolone decanoate administration does not preserve skeletal muscle mass and strength during a short period of leg immobilization in vivo in humans.

]]>
<![CDATA[Lifelong aerobic exercise protects against inflammaging and cancer]]> https://www.researchpad.co/article/5c57e679d5eed0c484ef3350

Biological aging is associated with progressive damage accumulation, loss of organ reserves, and systemic inflammation ('inflammaging'), which predispose for a wide spectrum of chronic diseases, including several types of cancer. In contrast, aerobic exercise training (AET) reduces inflammation, lowers all-cause mortality, and enhances both health and lifespan. In this study, we examined the benefits of early-onset, lifelong AET on predictors of health, inflammation, and cancer incidence in a naturally aging mouse model (C57BL/J6). Lifelong, voluntary wheel-running (O-AET; 26-month-old) prevented age-related declines in aerobic fitness and motor coordination vs. age-matched, sedentary controls (O-SED). AET also provided partial protection against sarcopenia, dynapenia, testicular atrophy, and overall organ pathology, hence augmenting the ‘physiologic reserve’ of lifelong runners. Systemic inflammation, as evidenced by a chronic elevation in 17 of 18 pro- and anti-inflammatory cytokines and chemokines (P < 0.05 O-SED vs. 2-month-old Y-CON), was potently mitigated by lifelong AET (P < 0.05 O-AET vs. O-SED), including master regulators of the cytokine cascade and cancer progression (IL-1β, TNF-α, and IL-6). In addition, circulating SPARC, previously known to be upregulated in metabolic disease, was elevated in old, sedentary mice, but was normalized to young control levels in lifelong runners. Remarkably, malignant tumours were also completely absent in the O-AET group, whereas they were present in the brain (pituitary), liver, spleen, and intestines of sedentary mice. Collectively, our results indicate that early-onset, lifelong running dampens inflammaging, protects against multiple cancer types, and extends healthspan of naturally-aged mice.

]]>
<![CDATA[Associations between cervical disc degeneration and muscle strength in a cross-sectional population-based study]]> https://www.researchpad.co/article/5c57e6dbd5eed0c484ef3f9e

The physical and biochemical factors related to cervical disc degeneration (CDD), which is involved in several spinal disorders, remain uncertain. We investigated associations between CDD and muscle strength in a general Japanese population. We used mid-sagittal-plane MRIs to assess CDD in 344 subjects recruited from participants in our community health-check project, and measured body mass index (BMI), skeletal muscle index (SMI), and muscle strength in the neck, trunk, hands, and legs. CDD was scored based on the prevalence and severity of intravertebral disc degeneration. Spearman correlation coefficients were used to evaluate whether the SMI or muscle-strength values were correlated with the disc degenerative score. Stepwise multiple linear regression analyses were then conducted with the CDD score as the dependent variable, and age, sex, BMI, and muscle strength as independent variables, for each gender. These analyses used the muscle-strength parameters that were found to be correlated with the CDD scores in the single correlation analyses. The CDD scores were similar in men and women. Men had significantly more muscle strength in the neck, trunk, hands, and legs. There was a significant negative corelation between the CDD score and the trunk strength in both sexes, handgrip in men, and leg strength in women in the single-variable correlation analysis. Including age and the limb- or trunk-muscle strength comprehensively, multiple linear regression analyses showed that age was the strongest factor that was independently associated with CDD in both sexes, and that the effects were attenuated by limb and trunk muscle strength.

]]>
<![CDATA[Metabolic health is more closely associated with decrease in lung function than obesity]]> https://www.researchpad.co/article/5c5217fbd5eed0c484795dfe

Objective

Previous studies have evaluated the link between metabolic syndrome and obesity with impaired lung function, however findings have been controversial. We aimed to compare lung function among subjects with different metabolic health and obesity status.

Methods

Total 10,071 participants were evaluated at the Health Promotion Center in Seoul St. Mary’s Hospital between January 2012 and December 2014. Being metabolically healthy was defined as having fewer than three of the following risk factors: high blood pressure, high fasting blood glucose, high triglyceride, low high-density lipoprotein cholesterol and abdominal obesity. Obesity status was defined as body mass index (BMI) higher than 25 kg/m2. Analyses of pulmonary function were performed in four groups divided according to metabolic health and obesity: metabolically healthy non-obese (MHNO), metabolically health obese (MHO), metabolically unhealthy non-obese (MUHNO), and metabolically unhealthy obese (MUHO).

Results

Metabolically unhealthy subjects were more prone to decreased lung function compared with their metabolically healthy counterparts, regardless of obesity status. When multinomial logistic regression analysis was performed according to quartiles of forced vital capacity (FVC) or forced expiratory volume in 1 second (FEV1) (% pred), after adjusting for age, sex, and smoking status, odds ratio (OR) for the lowest FVC and FEV1 (% pred) quartiles were significantly higher in MUHO subjects (1.788 [95% CI, 1.531–2.089] and 1.603 [95% CI, 1.367–1.881]) and lower in MHO subjects (0.768 [95% CI, 0.654–0.902] and 0.826 [95% CI, 0.700–0.976]) with MHNO group as the reference, when OR for highest FVC and FEV1 quartiles were considered as 1.0

Conclusion

Metabolic health is more closely associated with impaired lung function than obesity.

]]>
<![CDATA[Submaximal exercise cardiac output is increased by 4 weeks of sprint interval training in young healthy males with low initial Q̇-V̇O2: Importance of cardiac response phenotype]]> https://www.researchpad.co/article/5c521807d5eed0c484796650

Cardiovascular adaptations to exercise, particularly at the individual level, remain poorly understood. Previous group level research suggests the relationship between cardiac output and oxygen consumption (Q˙-V˙O2) is unaffected by training as submaximal Q˙ is unchanged. We recently identified substantial inter-individual variation in the exercise Q˙-V˙O2 relationship that was correlated to stroke volume (SV) as opposed to arterial oxygen content. Therefore we explored the effects of sprint interval training (SIT) on modulating Q˙-V˙O2 given an individual’s specific Q˙-V˙O2 relationship. 22 (21±2 yrs) healthy, recreationally active males participated in a 4-week SIT (8, 20 second sprints; 4x/week, 170% of the work rate at V˙O2 peak) study with progressive exercise tests (PET) until exhaustion. Cardiac output (Q˙ L/min; inert gas rebreathe, Finometer Modelflow™), oxygen consumption (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps oxygenation (near infrared spectroscopy) and exercise tolerance (6–20; Borg Scale RPE) were measured throughout PET both before and after training. Data are mean Δ from bsl±SD. Higher Q˙ (HQ˙) and lower Q˙ (LQ˙) responders were identified post hoc (n = 8/group). SIT increased the Q˙-V˙O2 post-training in LQ˙ (3.8±0.2 vs. 4.7±0.2; P = 0.02) while HQ˙ was unaffected (5.8±0.1 vs. 5.3±0.6; P = 0.5). ΔQ˙ was elevated beyond 80 watts in LQ˙ due to a greater increase in SV (all P<0.04). Peak V˙O2 (ml/kg/min) was increased in LQ˙ (39.7±6.7 vs. 44.5±7.3; P = 0.015) and HQ˙ (47.2±4.4 vs. 52.4±6.0; P = 0.009) following SIT, with HQ˙ having a greater peak V˙O2 both pre (P = 0.02) and post (P = 0.03) training. Quadriceps muscle oxygenation and RPE were not different between groups (all P>0.1). In contrast to HQ˙, LQ˙ responders are capable of improving submaximal Q˙-V˙O2 in response to SIT via increased SV. However, the increased submaximal exercise Q˙ does not benefit exercising muscle oxygenation.

]]>
<![CDATA[The molecular structure of β-alanine is resistant to sterilising doses of gamma radiation]]> https://www.researchpad.co/article/5c478c76d5eed0c484bd2752

β-alanine is the rate-limiting point for the endogenous synthesis of carnosine in skeletal muscle. Carnosine has a wide range of implications for health, normal function and exercise performance. Whilst the physiological relevance of carnosine to different tissues remains enigmatic, β-alanine administration is a useful strategy to investigate the physiological roles of carnosine in humans. Intravenous administration of β-alanine is an interesting approach to study carnosine metabolism. However, sterilisation is mandatory due to the nature of the administration route. We evaluated whether sterilising doses of gamma radiation damages the molecular structure and leads to the loss of functional characteristics of β-alanine. Pure β-alanine was sterilised by gamma radiation in sealed glass vials using a 60Co multipurpose irradiator at a dose rate of 8.5 kGy.hour-1 totalising 10, 20, 25 30 and 40 kGy. The molecular integrity was assessed by X-ray Diffraction and changes in content were determined by High Performance Liquid Chromatography (UV-HPLC) and Triple Quadrupole Mass Spectrometer (HPLC/MS-MS). Sterility assurance was evaluated by inoculation assay. To examine whether functional properties were preserved, β-alanine was infused in one participant, who rated the level of paraesthesia on the skin using a 0–3 scale. Urinary β-alanine was quantified before and 24-h following β-alanine infusion using HPLC-ESI+-MS/MS. Irradiation resulted in no change in the crystal structure of β-alanine, no degradation, and no new peaks were identified in the dose range assayed. The inoculation assay showed the absence of viable microorganisms in all β-alanine samples, including those that did not undergo irradiation. Intravenous infusion of β-alanine resulted in paraesthesia and it detected in the urine as per normal. We conclude that gamma radiation is a suitable technique for the sterilisation of β-alanine. It does not lead to degradation, damage to the β-alanine structure, content or loss of function within the evaluated irradiation conditions.

]]>
<![CDATA[Change in skeletal muscle associated with unplanned hospital admissions in adult patients: A systematic review and meta-analysis]]> https://www.researchpad.co/article/5c390bc5d5eed0c48491e3f6

Objectives

The primary objective of the review was to describe change that occurs in skeletal muscle during periods of unplanned hospitalisation in adult patients. The secondary objective was to examine the relationship between both physical activity and inflammation with the change in skeletal muscle. A further objective was to investigate the effect of interventions on change in skeletal muscle during periods of unplanned hospitalisation.

Design

A systematic review and meta-analyses. Embase, MEDLINE, CINAHL, AMED, PEDro and the Cochrane Library were searched for studies that included any measures of skeletal muscle (excluding pulmonary function) at two time points during unplanned hospitalisation. Studies that were set in critical care, or included patients with acute or progressive neurological illness, were excluded.

Results

Our search returned 27,809 unique articles, of which 35 met the inclusion criteria. Meta-analyses of change between baseline and follow-up in random effects models suggested that grip strength had an average increase: standardised mean difference (SMD) = 0.10 (95% CI: 0.03; 0.16); knee extension strength had an average reduction: SMD = -0.24 (95% CI: -0.33; -0.14); and mid-arm muscle circumference had an average reduction: SMD = -0.17 (95% CI: -0.22; -0.11). Inflammation appeared to be associated with greater loss of muscle strength. There was inconclusive evidence that the level of physical activity affects change in skeletal muscle. In regard to the effect of interventions, only exercise interventions were consistently associated with improved skeletal muscle outcomes.

Conclusions

Adult patients who undergo an unplanned hospital admission may experience a small reduction in knee extension strength and mid-arm muscle mass. Prospective research is needed to clarify the contribution of confounding factors underlying the observations made in this review, with particular attention to levels of physical activity, and possible contributions from environmental factors and processes of hospital care.

]]>
<![CDATA[Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis]]> https://www.researchpad.co/article/5c3fa576d5eed0c484ca4a0f

Background

Genetics plays a role in determining potential for athletic ability (AA) and sports performance (SP). In this study, AA involves comparing sedentary controls with competitive athletes in power and endurance activities as well as a mix between the two (SP). However, variable results from genetic association studies warrant a meta-analysis to obtain more precise estimates of the association between PPARGC1A Gly482Ser polymorphism and AA/SP.

Methods

Multi-database literature search yielded 14 articles (16 studies) for inclusion. Pooled odds ratios (ORs) and 95% confidence intervals (CI) were used to estimate associations. Summary effects were modified based on statistical power. Subgroup analysis was based on SP (power, endurance and mixed) and race (Caucasians and Asians). Heterogeneity was assessed with the I2 metric and its sources examined with outlier analysis which dichotomized our findings into pre- (PRO) and post-outlier (PSO).

Results

Gly allele effects significantly favoring AA/SP (OR > 1.0, P < 0.05) form the core of our findings in: (i) homogeneous overall effect at the post-modified, PSO level (OR 1.13, 95% CI 1.03–1.25, P = 0.01, I2 = 0%); (ii) initially homogeneous power SP (ORs 1.22–1.25, 95% CI 1.05–1.44, P = 0.003–0.008, I2 = 0%) which precluded outlier treatment; (iii) PRO Caucasian outcomes (ORs 1.29–1.32, 95% CI 1.12–1.54, P = 0.0005) over that of Asians with a pooled null effect (OR 0.99, 95% CI 0.72–1.99, P = 0.53–0.92) and (iv) homogeneous all > 80% (ORs 1.19–1.38, 95% CI 1.05–1.66, P = 0.0007–0.007, I2 = 0%) on account of high statistical power (both study-specific and combined). In contrast, none of the Ser allele effects significantly favored AA/SP and no Ser-Gly genotype outcome favored AA/SP. The core significant outcomes were robust and showed no evidence of publication bias.

Conclusion

Meta-analytical applications in this study generated evidence that show association between the Gly allele and AA/SP. These were observed in the overall, Caucasians and statistically powered comparisons which exhibited consistent significance, stability, robustness, precision and lack of bias. Our central findings rest on association of the Gly allele with endurance and power, differentially favoring the latter over the former.

]]>
<![CDATA[The synergism of high-intensity intermittent exercise and every-other-day intermittent fasting regimen on energy metabolism adaptations includes hexokinase activity and mitochondrial efficiency]]> https://www.researchpad.co/article/5c269782d5eed0c48470fbea

Visceral lipid accumulation, organ hypertrophy and a reduction in skeletal muscle strength are all signs associated with the severity of obesity-related disease. Intermittent fasting (IF) and high-intensity intermittent exercise (HIIE) are natural strategies that, individually, can prevent and help treat obesity along with metabolic syndrome and its associated diseases. However, the combinatorial effect of IF and HIIE on energetic metabolism is currently not well understood. We hypothesized that their combination could have a potential for more than strictly additive benefits. Here, we show that two months of every-other-day intermittent fasting regimen combined with a high-intensity intermittent exercise protocol (IF/HIIE) produced a synergistic effect, enhancing physical endurance (vs. control, HIIE and IF) and optimizing metabolic pathways of energy production in male Wistar rats. The IF/HIIE group presented enhanced glucose tolerance (vs. control, HIIE and IF), lower levels of plasma insulin (vs. control and HIIE), and a global activation of low Km hexokinases in liver (vs. control, HIIE and IF), heart (vs. control and HIIE) and skeletal muscle (vs. control, HIIE and IF). The IF/HIIE synergism, rather than a simply additive effect, is evidenced by increase in muscle mass and cross-section area, activation of the FoF1 ATP synthase, and the gain of characteristics suggestive of augmented mitochondrial mass and efficiency observed in this group. Finally, important reductions in plasma oxidative stress markers were present preferentially in IF/HIIE group. These findings provide new insights for the implementation of non-pharmaceutical strategies to prevent/treat metabolic syndrome and associated diseases.

]]>
<![CDATA[Benefits of resistance training on body composition and glucose clearance are inhibited by long-term low carbohydrate diet in rats]]> https://www.researchpad.co/article/5c141ef7d5eed0c484d290e5

Background/Objectives

Regular exercise training is effective to altering many markers of metabolic syndrome and its effects are strongly influenced by the type of consumed diet. Nowadays, resistance training (RT) has been frequently associated with low-carbohydrate high-fat diet (LCD). After long term these diets causes body weight (BW) regain with deleterious effects on body composition and metabolic risk factors. The effects of RT associated with long-term LCD on these parameters remain unexplored. We aimed to investigate the effects of RT when associated with long-term LCD on BW, feed efficiency, body composition, glucose homeostasis, liver parameters and serum biochemical parameters during BW regain period in rats.

Subjects/Methods

Male Sprague–Dawley rats were fed with LCD (LC groups) or standard diet (STD) (ST groups). After 10 weeks-diet animals were separated into sedentary (Sed-LC and Sed-ST) and resistance-trained (RT-LC and RT-ST) groups (N = 8/group). RT groups performed an 11-week climbing program on a ladder with progressive load. Dual x-ray absorptiometry, glucose tolerance tests and insulin tolerance tests were performed at weeks 10 and 20. Liver and serum were collected at week 21.

Results

RT reduced feed efficiency, BW gain, liver fat and total and LDL cholesterol, and improved body composition and glucose clearance in animals fed on STD. In those fed with LCD, RT reduced caloric intake, BW regain, liver fat and serum triglycerides levels. However, improvement in body composition was inhibited and bone mineral density and glucose clearance was further impaired in this association.

Conclusions

The LCD nullifies the beneficial effects of RT on body composition, glucose homeostasis and impairs some health parameters. Our results do not support the association of RT with LCD in a long term period.

]]>
<![CDATA[Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle]]> https://www.researchpad.co/article/5c10287dd5eed0c4842474bf

Background

Hypoxia training enhances the endurance capacity of athletes. This response may in part be attributed to the hypoxia-induced increase in antioxidant capacity in skeletal muscles. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor which regulates the expression of genes via binding to the antioxidant-response element (ARE) of these genes, plays a crucial role in stimulating the body’s defense system and potentially responds to hypoxia. Meanwhile, hypoxia-inducible factor-1α (HIF-1α) is an important player in protecting cells from hypoxic stress. The purpose of this study was to investigate the effects of acute hypoxia exposure with different durations on the activation of Nrf2-ARE pathway and a possible regulatory role of HIF-1α in these responses.

Methods

C57BL/6J mice were allocated into the non-hypoxia 0-hour, 6-hour, 24-hour, and 48-hour hypoxic exposure (11.2% oxygen) groups. The quadriceps femoris was collected immediately after hypoxia. Further, to investigate the possible role of HIF-1α, C2C12 myoblasts with HIF-1α knockdown by small interfering RNA (siRNA) and the inducible HIF-1α transgenic mice were employed.

Results

The results showed that 48-hour hypoxia exposure up-regulated protein expression of Nrf2, Nrf2/ARE binding activity and the transcription of antioxidative genes containing ARE (Sod1 and others) in mouse skeletal muscle. Moreover, HIF-1α siRNA group of C2C12 myoblasts showed a remarkable inhibition of Nrf2 protein expression and nuclear accumulation in hypoxia exposure for 72 hours compared with that in siRNA-Control group of the cells. In addition, HIF-1α transgenic mice gave higher Nrf2 protein expression, Nrf2/ARE binding activity and expressions of Nrf2-mediated antioxidative genes in their skeletal muscle, compared with those in the wild-type mice.

Conclusions

The findings suggested that the acute hypoxia exposure could trigger the activation of Nrf2-ARE pathway, with longer duration associated with higher responses, and HIF-1α expression might be involved in promoting the Nrf2-mediated antioxidant responses in skeletal muscle.

]]>