ResearchPad - smooth-muscle-cells https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The adipokine vaspin is associated with decreased coronary in-stent restenosis <i>in vivo</i> and inhibits migration of human coronary smooth muscle cells <i>in vitro</i>]]> https://www.researchpad.co/article/elastic_article_7692 Percutaneous coronary intervention represents the most important treatment modality of coronary artery stenosis. In-stent restenosis (ISR) is still a limitation for the long-term outcome despite the introduction of drug eluting stents. It has been shown that adipokines directly influence vessel wall homeostasis by influencing the function of endothelial cells and arterial smooth muscle cells. Visceral adipose tissue-derived serpin vaspin was recently identified as a member of serine protease inhibitor family and serveral studies could demonstrate a relation to metabolic diseases. The aim of this study was to investigate a role of vaspin in the development of in-stent restenosis in vivo and on migration of smooth muscle cells and endothelial cells in vitro.MethodsWe studied 85 patients with stable coronary artery disease who underwent elective and successful PCI with implatation of drug eluting stents. Blood samples were taken directly before PCI. Vaspin plasma levels were measured by specific ELISA. ISR was evaluated eight months later by coronary angiography. Human coronary artery smooth muscle cells (HCASMC) and human umbilical vein endothelial cells (HUVEC) migration was analyzed by an in-vitro migration assay with different concentrations (0.004ng/mL up to 40ng/mL) of vaspin as well as by an scratch assay. For proliferation an impedance measurement with specialiced E-Plates was performed.ResultsDuring the follow up period, 14 patients developed ISR. Patients with ISR had significantly lower vaspin plasma levels compared to patients without ISR (0.213 ng/ml vs 0.382 ng/ml; p = 0.001). In patients with plasma vaspin levels above 1.35 ng/ml we could not observe any restenosis. There was also a significant correlation of plasma vaspin levels and late lumen loss in the stented coronary segments. Further we could demonstrate that vaspin nearly abolishes serum induced migration of HCASMC (100% vs. 9%; p<0.001) in a biphasic manner but not migration of HUVEC. Proliferation of HCASMC and HUVEC was not modulated by vaspin treatment.ConclusionWe were able to show that the adipokine vaspin selectively inhibits human coronary SMC migration in vitro and has no effect on HUVEC migration. Vaspin had no effect on proliferation of HUVEC which is an important process of the healing of the stented vessel. In addition, the occurrence of ISR after PCI with implantation of drug eluting stents was significantly associated with low vaspin plasma levels before intervention. Determination of vaspin plasma levels before PCI might be helpful in the identification of patients with high risk for development of ISR after stent implantation. In addition, the selective effects of vaspin on smooth muscle cell migration could potentially be used to reduce ISR without inhibition of re-endothelialization of the stented segment. ]]> <![CDATA[Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing]]> https://www.researchpad.co/article/5c8c1978d5eed0c484b4d71e

Various strategies have been attempted to replace esophageal defects with natural or artificial substitutes using tissue engineering. However, these methods have not yet reached clinical application because of the high risks related to their immunogenicity or insufficient biocompatibility. In this study, we developed a scaffold-free structure with a mixture of cell types using bio-three-dimensional (3D) printing technology and assessed its characteristics in vitro and in vivo after transplantation into rats. Normal human dermal fibroblasts, human esophageal smooth muscle cells, human bone marrow-derived mesenchymal stem cells, and human umbilical vein endothelial cells were purchased and used as a cell source. After the preparation of multicellular spheroids, esophageal-like tube structures were prepared by bio-3D printing. The structures were matured in a bioreactor and transplanted into 10-12-week-old F344 male rats as esophageal grafts under general anesthesia. Mechanical and histochemical assessment of the structures were performed. Among 4 types of structures evaluated, those with the larger proportion of mesenchymal stem cells tended to show greater strength and expansion on mechanical testing and highly expressed α-smooth muscle actin and vascular endothelial growth factor on immunohistochemistry. Therefore, the structure with the larger proportion of mesenchymal stem cells was selected for transplantation. The scaffold-free structures had sufficient strength for transplantation between the esophagus and stomach using silicon stents. The structures were maintained in vivo for 30 days after transplantation. Smooth muscle cells were maintained, and flat epithelium extended and covered the inner surface of the lumen. Food had also passed through the structure. These results suggested that the esophagus-like scaffold-free tubular structures created using bio-3D printing could hold promise as a substitute for the repair of esophageal defects.

]]>
<![CDATA[Regulation of gastric smooth muscle contraction via Ca2+-dependent and Ca2+-independent actin polymerization]]> https://www.researchpad.co/article/5c254570d5eed0c48442c760

In gastrointestinal smooth muscle, acetylcholine induced muscle contraction is biphasic, initial peak followed by sustained contraction. Contraction is regulated by phosphorylation of 20 kDa myosin light chain (MLC) at Ser19, interaction of actin and myosin, and actin polymerization. The present study characterized the signaling mechanisms involved in actin polymerization during initial and sustained muscle contraction in response to muscarinic M3 receptor activation in gastric smooth muscle cells by targeting the effectors of initial (phospholipase C (PLC)-β/Ca2+ pathway) and sustained (RhoA/focal adhesion kinase (FAK)/Rho kinase pathway) contraction. The initial Ca2+ dependent contraction and actin polymerization is mediated by sequential activation of PLC-β1 via Gαq, IP3 formation, Ca2+ release and Ca2+ dependent phosphorylation of proline-rich-tyrosine kinase 2 (Pyk2) at Tyr402. The sustained Ca2+ independent contraction and actin polymerization is mediated by activation of RhoA, and phosphorylation of FAK at Tyr397. Both phosphorylation of Pyk2 and FAK leads to phosphorylation of paxillin at Tyr118 and association of phosphorylated paxillin with the GEF proteins p21-activated kinase (PAK) interacting exchange factor α, β (α and β PIX) and DOCK 180. These GEF proteins stimulate Cdc42 leading to the activation of nucleation promoting factor N-WASP (neuronal Wiskott-Aldrich syndrome protein), which interacts with actin related protein complex 2/3 (Arp2/3) to induce actin polymerization and muscle contraction. Acetylcholine induced muscle contraction is inhibited by actin polymerization inhibitors. Thus, our results suggest that a novel mechanism for the regulation of smooth muscle contraction is mediated by actin polymerization in gastrointestinal smooth muscle which is independent of MLC20 phosphorylation.

]]>
<![CDATA[Enhancement of bradykinin-induced relaxation by focal brain ischemia in the rat middle cerebral artery: Receptor expression upregulation and activation of multiple pathways]]> https://www.researchpad.co/article/5b498f9f463d7e0897c6e018

Focal brain ischemia markedly affects cerebrovascular reactivity. So far, these changes have mainly been related to alterations in the level of smooth muscle cell function while alterations of the endothelial lining have not yet been studied in detail. We have, therefore, investigated the effects of ischemia/reperfusion injury on bradykinin (BK)-induced relaxation since BK is an important mediator of tissue inflammation and affects vascular function in an endothelium-dependent manner. Focal brain ischemia was induced in rats by endovascular filament occlusion (2h) of the middle cerebral artery (MCA). After 22h reperfusion, both MCAs were harvested and the response to BK studied in organ bath experiments. Expression of the BK receptor subtypes 1 and 2 (B1, B2) was determined by real-time semi-quantitative RT-qPCR methodology, and whole mount immunofluorescence staining was performed to show the B2 receptor protein expression. In control animals, BK did not induce significant vasomotor effects despite a functionally intact endothelium and robust expression of B2 mRNA. After ischemia/reperfusion injury, BK induced a concentration-related sustained relaxation in all arteries studied, more pronounced in the ipsilateral than in the contralateral MCA. The B2 mRNA was significantly upregulated and the B1 mRNA displayed de novo expression, again more pronounced ipsi- than contralaterally. Endothelial cells displaying B2 receptor immunofluorescence were observed scattered or clustered in previously occluded MCAs. Relaxation to BK was mediated by B2 receptor activation, abolished after endothelium denudation, and largely diminished by blocking nitric oxide (NO) release or soluble guanylyl cyclase activity. Relaxation to BK was partially inhibited by charybdotoxin (ChTx), but not apamin or iberiotoxin suggesting activation of an endothelium-dependent hyperpolarization pathway. When the NO-cGMP pathway was blocked, BK induced a transient relaxation which was suppressed by ChTx. After ischemia/reperfusion injury BK elicits endothelium-dependent relaxation which was not detectable in control MCAs. This gain of function is mediated by B2 receptor activation and involves the release of NO and activation of an endothelium-dependent hyperpolarization. It goes along with increased B2 mRNA and protein expression, leaving the functional role of the de novo B1 receptor expression still open.

]]>
<![CDATA[Differential Regulation of Human Aortic Smooth Muscle Cell Proliferation by Monocyte-Derived Macrophages from Diabetic Patients]]> https://www.researchpad.co/article/5989db43ab0ee8fa60bd793c

Macrophage accumulation in the arterial wall and smooth muscle cell (SMC) proliferation are features of type 2 diabetes mellitus (DM) and its vascular complications. However, the effects of diabetic monocyte-derived macrophages on vascular SMC proliferation are not clearly understood. In the present study, we investigated the pro-proliferative effect of macrophages isolated from DM patients on vascular SMCs. Macrophage-conditioned media (MCM) were prepared from macrophages isolated from DM patients. DM-MCM treatment induced HASMC proliferation, decreased p21Cip1 and p27Kip1 expressions, and increased microRNA (miR)-17-5p and miR-221 expressions. Inhibition of either miR-17-5p or miR-221 inhibited DM-MCM-induced cell proliferation. Inhibition of miR-17-5p abolished DM-MCM-induced p21Cip1 down-regulation; and inhibition of miR-221 attenuated the DM-MCM-induced p27Kip1 down-regulation. Furthermore, blocking assays demonstrated that PDGF-CC in DM-MCM is the major mediators of cell proliferation in SMCs. In conclusion, our present data support the hypothesis that SMC proliferation stimulated by macrophages may play critical roles in vascular complications in DM patients and suggest a new mechanism by which arterial disease is accelerated in diabetes.

]]>
<![CDATA[Smooth Muscle Strips for Intestinal Tissue Engineering]]> https://www.researchpad.co/article/5989da09ab0ee8fa60b77094

Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle.

]]>
<![CDATA[IL-10 Accelerates Re-Endothelialization and Inhibits Post-Injury Intimal Hyperplasia following Carotid Artery Denudation]]> https://www.researchpad.co/article/5989daecab0ee8fa60bbf65f

The role of inflammation on atherosclerosis and restenosis is well established. Restenosis is thought to be a complex response to injury, which includes early thrombus formation, acute inflammation and neo-intimal growth. Inflammatory cells are likely contributors in the host response to vascular injury, via cytokines and chemokines secretion, including TNF-alpha (TNF). We have previously shown that IL-10 inhibits TNF and other inflammatory mediators produced in response to cardiovascular injuries. The specific effect of IL-10 on endothelial cell (ECs) biology is not well elucidated. Here we report that in a mouse model of carotid denudation, IL-10 knock-out mice (IL-10KO) displayed significantly delayed Re-endothelialization and enhanced neo-intimal growth compared to their WT counterparts. Exogenous recombinant IL-10 treatment dramatically blunted the neo-intimal thickening while significantly accelerating the recovery of the injured endothelium in WT mice. In vitro, IL-10 inhibited negative effects of TNF on ECs proliferation, ECs cell cycle, ECs-monocyte adhesion and ECs apoptosis. Furthermore, IL-10 treatment attenuated TNF-induced smooth muscle cells proliferation. Our data suggest that IL-10 differentially regulate endothelial and vascular smooth cells proliferation and function and thus inhibits neo-intimal hyperplasia. Thus, these results may provide insights necessary to develop new therapeutic strategies to limit vascular restenosis during percutaneous coronary intervention (PCI) in the clinics.

]]>
<![CDATA[Viscolin Inhibits In Vitro Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia In Vivo]]> https://www.researchpad.co/article/5989d9e4ab0ee8fa60b6ab97

Viscolin, an extract of Viscum coloratum, has anti-inflammatory and anti-proliferative properties against harmful stimuli. The aim of the study was to examine the anti-proliferative effects of viscolin on platelet derived growth factor-BB (PDGF)-treated human aortic smooth muscle cells (HASMCs) and identify the underlying mechanism responsible for these effects. Viscolin reduced the PDGF-BB-induced HASMC proliferation and migration in vitro; it also arrested HASMCs in the G0/G1 phase by decreasing the protein expression of Cyclin D1, CDK2, Cyclin E, CDK4, and p21Cip1 as detected by Western blot analysis. These effects may be mediated by reduced PDGF-induced phosphorylation of ERK1/2, JNK, and P38, but not AKT as well as inhibition of PDGF-mediated nuclear factor (NF)-κB p65 and activator protein 1 (AP-1)/c-fos activation. Furthermore, viscolin pre-treatment significantly reduced neointimal hyperplasia of an endothelial-denuded femoral artery in vivo. Taken together, viscolin attenuated PDGF–BB-induced HASMC proliferation in vitro and reduced neointimal hyperplasia in vivo. Thus, viscolin may represent a therapeutic candidate for the prevention and treatment of vascular proliferative diseases.

]]>
<![CDATA[Chemokine Ligand 5 (CCL5) Derived from Endothelial Colony-Forming Cells (ECFCs) Mediates Recruitment of Smooth Muscle Progenitor Cells (SPCs) toward Critical Vascular Locations in Moyamoya Disease]]> https://www.researchpad.co/article/5989da9cab0ee8fa60ba4050

The etiology and pathogenesis of moyamoya disease (MMD) are still obscure. Previous studies indicated that angiogenic chemokines may play an important role in the pathogenesis of the disease. Recently, it was discovered that peripheral blood-derived endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SPCs) have defective functions in MMD patients. Therefore, the interaction of ECFCs and SPCs, the precursors of two crucial cellular components of vascular walls, with some paracrine molecules is an intriguing subject. In this study, co-culture of ECFCs and SPCs from MMD patients and healthy normal subjects revealed that MMD ECFCs, not SPCs, are responsible for the defective functions of both ECFCs and SPCs. Enhanced migration of SPCs toward MMD ECFCs supported the role for some chemokines secreted by MMD ECFCs. Expression arrays of MMD and normal ECFCs suggested that several candidate cytokines differentially produced by MMD ECFCs. We selected chemokine (C-X-C motif) ligand 6 (CXCR6), interleukin-8 (IL8), chemokine (C-C motif) ligand 2 (CCL2), and CCL5 for study, based on the relatively higher expression of these ligands in MMD ECFCs and their cognate receptors in MMD SPCs. Migration assays showed that only CCL5 significantly augmented the migration activities of SPCs toward ECFCs. Treatment with siRNA for the CCL5 receptor (CCR5) abrogated the effect, confirming that CCL5 is responsible for the interaction of MMD ECFCs and SPCs. These data indicate that ECFCs, not SPCs, are the major players in MMD pathogenesis and that the chemokine CCL5 mediates the interactions. It can be hypothesized that in MMD patients, defective ECFCs direct aberrant SPC recruitment to critical vascular locations through the action of CCL5.

]]>
<![CDATA[Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc1d6

In vitro and in vivo evidence has indicated that the tumor suppressor, p53, may play a significant role in the regulation of atherosclerotic plaque formation. In vivo studies using global knockout mice models, however, have generated inconclusive results that do not address the roles of p53 in various cell types involved in atherosclerosis. In this study, we have specifically ablated p53 in vascular smooth muscle cells (VSMC) in the ApoE-/- mouse model to investigate the roles of p53 in VSMC in atherosclerotic plaque formation and stability. We found that p53 deficiency in VSMC alone did not affect the overall size of atherosclerotic lesions. However, there was a significant increase in the number of p53-/- VSMC in the fibrous caps of atherosclerotic plaques in the early stages of plaque development. Loss of p53 results in migration of VSMC at a faster rate using wound healing assays and augments PDGF-induced formation of circular dorsal ruffles (CDR), known to be involved in cell migration and internalization of surface receptors. Furthermore, aortic VSMC from ApoE-/- /p53-/- mice produce significantly more podosomes and are more invasive. We conclude that p53-/- VSMC are enriched in the fibrous caps of lesions at early stages of plaque formation, which is caused in part by an increase in VSMC migration and invasion as shown by p53-/- VSMC in culture having significantly higher rates of migration and producing more CDRs and invasive podosomes.

]]>
<![CDATA[Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells]]> https://www.researchpad.co/article/5989da26ab0ee8fa60b80d5e

Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

]]>
<![CDATA[Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension]]> https://www.researchpad.co/article/5989d9d2ab0ee8fa60b6480f

Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice.

]]>
<![CDATA[Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen]]> https://www.researchpad.co/article/5989d9d3ab0ee8fa60b64e79

Smooth muscle cells (SMCs) are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor—BB (PDGF-BB) and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH) at 0 d), SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH) at 0 d) and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH) at 0 d). Bromodeoxyuridine (BrdU) incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2), and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining)). Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

]]>
<![CDATA[Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling]]> https://www.researchpad.co/article/5989dac9ab0ee8fa60bb399f

Vascular neointimal hyperplasia and remodeling arising from local inflammation are characteristic pathogeneses of proliferative cardiovascular diseases, such as atherosclerosis and post angioplasty restenosis. The molecular mechanisms behind these pathological processes have not been fully determined. The adipokine chemerin is associated with obesity, metabolism, and control of inflammation. Recently, chemerin has gained increased attention as it was found to play a critical role in the development of cardiovascular diseases. In this study, we investigated the effects of chemerin on the regulation of vascular smooth muscle cells and carotid neointimal formation after angioplasty. We found that circulating chemerin levels increased after carotid balloon injury, and that knockdown of chemerin significantly inhibited the proliferative aspects of vascular smooth muscle cells induced by platelet-derived growth factor-BB and pro-inflammatory chemokines in vitro as well as prohibited carotid neointimal hyperplasia and pro-inflammatory chemokines in vivo after angioplasty. Additionally, inhibition of chemerin down-regulated the expression of several proteins, including phosphorylated p38 mitogen-activated protein kinase, phosphorylated extracellular signal regulated kinase 1/2, nuclear factor-kappa B p65, and proliferation cell nuclear antigen. The novel finding of this study is that chemerin stimulated vascular smooth muscle cells proliferation and carotid intimal hyperplasia through activation of the mitogen-activated protein kinase signaling pathway, which may lead to vascular inflammation and remodeling, and is relevant to proliferative cardiovascular diseases.

]]>
<![CDATA[The Pro-Resolving Lipid Mediator Maresin 1 (MaR1) Attenuates Inflammatory Signaling Pathways in Vascular Smooth Muscle and Endothelial Cells]]> https://www.researchpad.co/article/5989d9f0ab0ee8fa60b6e363

Objective

Inflammation and its resolution are central to vascular injury and repair. Maresins comprise a new family of bioactive lipid mediators synthesized from docosahexaenoic acid, an ω-3 polyunsaturated fatty acid. They have been found to exert anti-inflammatory and pro-resolving responses in macrophages, neutrophils and bronchial epithelial cells and impart beneficial actions in murine models of peritonitis and colitis. We investigated the impact of maresin-1 (MaR1) on tumor necrosis factor alpha (TNF-α) induced inflammatory responses in human vascular endothelial (EC) and smooth muscle cells (VSMC).

Methods

Primary cultures of human saphenous vein EC and VSMC were employed. We tested the naturally occurring MaR1 as modulator of TNF-α effects, with examination of monocyte adhesion, oxidant stress, and intracellular inflammatory signaling pathways.

Results

MaR1 attenuated TNF-α induced monocyte adhesion and reactive oxygen species (ROS) generation in both EC and VSMC, associated with down-regulated expression (cell surface) of the adhesion molecule E-selectin (in EC) and NADPH-oxidases (NOX4, NOX1, NOX2). MaR1 attenuated TNF-α induced release of pro-inflammatory mediators by EC and VSMC. MaR1 caused an attenuation of TNF-α induced NF-κB activation in both cell types associated with inhibition of I-κ Kinase (IKK) phosphorylation, IκB-α degradation and nuclear translocation of the NF- κB p65 subunit. MaR1 also caused a time-dependent increase in intracellular cyclic AMP (cAMP) in both naive and TNF-α stimulated VSMC and EC.

Conclusions

MaR1 has broad anti-inflammatory actions on EC and VSMC, which may be partly mediated through up-regulation of cAMP and down-regulation of the transcription factor NF-κB. The results suggest that the pro-resolving lipid mediator MaR1 exerts homeostatic actions on vascular cells that counteract pro-inflammatory signals. These findings may have direct relevance for acute and chronic states of vascular inflammation.

]]>
<![CDATA[Role of Vascular Smooth Muscle PPARγ in Regulating AT1 Receptor Signaling and Angiotensin II-Dependent Hypertension]]> https://www.researchpad.co/article/5989da2aab0ee8fa60b820f3

Peroxisome proliferator activated receptor γ (PPARγ) has been reported to play a protective role in the vasculature; however, the underlying mechanisms involved are not entirely known. We previously showed that vascular smooth muscle-specific overexpression of a dominant negative human PPARγ mutation in mice (S-P467L) leads to enhanced myogenic tone and increased angiotensin-II-dependent vasoconstriction. S-P467L mice also exhibit increased arterial blood pressure. Here we tested the hypotheses that a) mesenteric smooth muscle cells isolated from S-P467L mice exhibit enhanced angiotensin-II AT1 receptor signaling, and b) the increased arterial pressure of S-P467L mice is angiotensin-II AT1 receptor dependent. Phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK1/2) was robustly increased in mesenteric artery smooth muscle cell cultures from S-P467L in response to angiotensin-II. The increase in ERK1/2 activation by angiotensin-II was blocked by losartan, a blocker of AT1 receptors. Angiotensin-II-induced ERK1/2 activation was also blocked by Tempol, a scavenger of reactive oxygen species, and correlated with increased Nox4 protein expression. To investigate whether endogenous renin-angiotensin system activity contributes to the elevated arterial pressure in S-P467L, non-transgenic and S-P467L mice were treated with the AT1 receptor blocker, losartan (30 mg/kg per day), for 14-days and arterial pressure was assessed by radiotelemetry. At baseline S-P467L mice showed a significant increase of systolic arterial pressure (142.0±10.2 vs 129.1±3.0 mmHg, p<0.05). Treatment with losartan lowered systolic arterial pressure in S-P467L (132.2±6.9 mmHg) to a level similar to untreated non-transgenic mice. Losartan also lowered arterial pressure in non-transgenic (113.0±3.9 mmHg) mice, such that there was no difference in the losartan-induced depressor response between groups (−13.53±1.39 in S-P467L vs −16.16±3.14 mmHg in non-transgenic). Our results suggest that interference with PPARγ in smooth muscle: a) causes enhanced angiotensin-II AT1 receptor-mediated ERK1/2 activation in resistance vessels, b) and may elevate arterial pressure through both angiotensin-II AT1 receptor-dependent and -independent mechanisms.

]]>
<![CDATA[P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate]]> https://www.researchpad.co/article/5989db16ab0ee8fa60bcd213

Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under experimental conditions.

]]>
<![CDATA[Similar regulatory mechanisms of caveolins and cavins by myocardin family coactivators in arterial and bladder smooth muscle]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0022

Caveolae are membrane invaginations present at high densities in muscle and fat. Recent work has demonstrated that myocardin family coactivators (MYOCD, MKL1), which are important for contractile differentiation and cell motility, increase caveolin (CAV1, CAV2, CAV3) and cavin (CAVIN1, CAVIN2, CAVIN3) transcription, but several aspects of this control mechanism remain to be investigated. Here, using promoter reporter assays we found that both MKL1/MRTF-A and MKL2/MRTF-B control caveolins and cavins via their proximal promoter sequences. Silencing of MKL1 and MKL2 in smooth muscle cells moreover reduced CAV1 and CAVIN1 mRNA levels by well over 50%, as did treatment with second generation inhibitors of MKL activity. GATA6, which modulates expression of smooth muscle-specific genes, reduced CAV1 and CAV2, whereas the cavins were unaffected or increased. Viral overexpression of MKL1 and myocardin induced caveolin and cavin expression in bladder smooth muscle cells from rats and humans and MYOCD correlated tightly with CAV1 and CAVIN1 in human bladder specimens. A recently described activator of MKL-driven transcription (ISX) failed to induce CAV1/CAVIN1 which may be due to an unusual transactivation mechanism. In all, these findings further support the view that myocardin family coactivators are important transcriptional drivers of caveolins and cavins in smooth muscle.

]]>
<![CDATA[NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbbdb

Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH). Nuclear Factor of Activated T-cells (NFAT) is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP) develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1) VIP inhibits NFAT isoform c3 (NFATc3) activity in pulmonary vascular smooth muscle cells; 2) lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3) VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC) cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients. In addition, we found that VIP inhibits NFAT nuclear translocation in primary human pulmonary artery smooth muscle cells (PASMC). Early activation of NFATc3 in IPF patients may contribute to disease progression and the increase in VIP expression could be a protective compensatory mechanism.

]]>
<![CDATA[MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension]]> https://www.researchpad.co/article/5989dabcab0ee8fa60baf3a7

Background

Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis.

Methods and Results

In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis.

Conclusions

Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH.

]]>