ResearchPad - spermatocytes https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Deletion of inositol polyphosphate 4-phosphatase type-II B affects spermatogenesis in mice]]> https://www.researchpad.co/article/elastic_article_14722 Inositol polyphosphate-4-phosphatase type II (INPP4B) is a dual-specificity phosphatase that acts as a tumor suppressor in multiple cancers. INPP4B dephosphorylates phospholipids at the 4th position of the inositol ring and inhibits AKT and PKC signaling by hydrolyzing of PI(3,4)P2 and PI(4,5)P2, respectively. INPP4B protein phosphatase targets include phospho-tyrosines on Akt and phospho-serine and phospho-threonine on PTEN. INPP4B is highly expressed in testes, suggesting its role in testes development and physiology. The objective of this study was to determine whether Inpp4b deletion impacts testicular function in mice. In testis, Inpp4b expression was the highest in postmeiotic germ cells in both mice and men. The testes of Inpp4b knockout male mice were significantly smaller compared to the testes of wild-type (WT) males. Inpp4b-/- males produced fewer mature sperm cells compared to WT, and this difference increased with age and high fat diet (HFD). Reduction in early steroidogenic enzymes and luteinizing hormone (LH) receptor gene expression was detected, although androgen receptor (AR) protein level was similar in WT and Inpp4b-/- testes. Germ cell apoptosis was significantly increased in the knockout mice, while expression of meiotic marker γH2A.X was decreased. Our data demonstrate that INPP4B plays a role in maintenance of male germ cell differentiation and protects testis functions against deleterious effects of aging and high fat diet.

]]>
<![CDATA[Drosophila melanogaster tPlus3a and tPlus3b ensure full male fertility by regulating transcription of Y-chromosomal, seminal fluid, and heat shock genes]]> https://www.researchpad.co/article/5c8accf0d5eed0c48499037d

Spermatogenesis in Drosophila melanogaster is characterized by a specific transcriptional program during the spermatocyte stage. Transcription of thousands of genes is regulated by the interaction of several proteins or complexes, including a tTAF-containing TFIID variant, tMAC, Mediator, and chromatin interactors, e.g., bromodomain proteins. We addressed how distinct subsets of target genes are selected. We characterized the highly similar proteins tPlus3a and tPlus3b, which contain a Plus3 domain and are enriched in the testis, mainly in spermatocytes. In tPlus3a and tplus3b deletion mutants generated using the CRISPR/Cas9 system, fertility was severely reduced and sperm showed defects during individualization. tPlus3a and tPlus3b heterodimerized with the bromodomain protein tBRD-1. To elucidate the role of the tPlus3a and tPlus3b proteins in transcriptional regulation, we determined the transcriptomes of tplus3a-tplus3b and tbrd-1 deletion mutants using next-generation sequencing (RNA-seq) and compared them to that of the wild-type. tPlus3a and tPlus3b positively or negatively regulated the expression of nearly 400 genes; tBRD-1 regulated 1,500 genes. Nearly 200 genes were regulated by both tPlus3a and tPlus3b and tBRD-1. tPlus3a and tPlus3b activated the Y-chromosomal genes kl-3 and kl-5, which indicates that tPlus3a and tPlus3b proteins are required for the function of distinct classes of genes. tPlus3a and tPlus3b and tBRD-1 repress genes relevant for seminal fluid and heat shock. We hypothesize that tPlus3a and tPlus3b proteins are required to specify the general transcriptional program in spermatocytes.

]]>
<![CDATA[Dual functions for the ssDNA-binding protein RPA in meiotic recombination]]> https://www.researchpad.co/article/5c61e915d5eed0c48496f7c4

Meiotic recombination permits exchange of genetic material between homologous chromosomes. The replication protein A (RPA) complex, the predominant ssDNA-binding complex, is required for nearly all aspects of DNA metabolism, but its role in mammalian meiotic recombination remains unknown due to the embryonic lethality of RPA mutant mice. RPA is a heterotrimer of RPA1, RPA2, and RPA3. We find that loss of RPA1, the largest subunit, leads to disappearance of RPA2 and RPA3, resulting in the absence of the RPA complex. Using an inducible germline-specific inactivation strategy, we find that loss of RPA completely abrogates loading of RAD51/DMC1 recombinases to programmed meiotic DNA double strand breaks, thus blocking strand invasion required for chromosome pairing and synapsis. Surprisingly, loading of MEIOB, SPATA22, and ATR to DNA double strand breaks is RPA-independent and does not promote RAD51/DMC1 recruitment in the absence of RPA. Finally, inactivation of RPA reduces crossover formation. Our results demonstrate that RPA plays two distinct roles in meiotic recombination: an essential role in recombinase recruitment at early stages and an important role in promoting crossover formation at later stages.

]]>
<![CDATA[Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions]]> https://www.researchpad.co/article/5c5df340d5eed0c484580ff5

MicroRNAs (miRNAs) play a critical role in multiple aspects of biology. Dicer, an RNase III endonuclease, is essential for the biogenesis of miRNAs, and the germ cell-specific Dicer1 knockout mouse shows severe defects in gametogenesis. How miRNAs regulate germ cell development is still not fully understood. In this study, we identified germ cell-specific miRNAs (miR-741-3p, miR-871-3p, miR-880-3p) by analyzing published RNA-seq data of mouse. These miRNA genes are contiguously located on the X chromosome near other miRNA genes. We named them X chromosome-linked miRNAs (XmiRs). To elucidate the functions of XmiRs, we generated knockout mice of these miRNA genes using the CRISPR/Cas9-mediated genome editing system. Although no histological abnormalities were observed in testes of F0 mice in which each miRNA gene was disrupted, a deletion covering miR-871 and miR-880 or covering all XmiRs (ΔXmiRs) resulted in arrested spermatogenesis in meiosis in a few seminiferous tubules, indicating their redundant functions in spermatogenesis. Among candidate targets of XmiRs, we found increased expression of a gene encoding a WNT receptor, FZD4, in ΔXmiRs testis compared with that in wildtype testis. miR-871-3p and miR-880-3p repressed the expression of Fzd4 via the 3′-untranslated region of its mRNA. In addition, downstream genes of the WNT/β-catenin pathway were upregulated in ΔXmiRs testis. We also found that miR-871, miR-880, and Fzd4 were expressed in spermatogonia, spermatocytes and spermatids, and overexpression of miR-871 and miR-880 in germ stem cells in culture repressed their increase in number and Fzd4 expression. Previous studies indicated that the WNT/β-catenin pathway enhances and represses proliferation and differentiation of spermatogonia, respectively, and our results consistently showed that stable β-catenin enhanced GSC number. In addition, stable β-catenin partially rescued reduced GSC number by overexpression of miR-871 and miR-880. The results together suggest that miR-871 and miR-880 cooperatively regulate the WNT/β-catenin pathway during testicular germ cell development.

]]>
<![CDATA[Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis]]> https://www.researchpad.co/article/5c50c4a0d5eed0c4845e8a80

Homologous recombination (HR) is the principal mechanism of DNA repair acting during meiosis and is fundamental for the segregation of chromosomes and the increase of genetic diversity. Nevertheless, non-homologous end joining (NHEJ) mechanisms can also act during meiosis, mainly in response to exogenously-induced DNA damage in late stages of first meiotic prophase. In order to better understand the relationship between these two repair pathways, we studied the response to DNA damage during male mouse meiosis after gamma radiation. We clearly discerned two types of responses immediately after treatment. From leptotene to early pachytene, exogenous damage triggered the massive presence of γH2AX throughout the nucleus, which was associated with DNA repair mediated by HR components (DMC1 and RAD51). This early pathway finished with the sequential removal of DMC1 and RAD51 and was no longer inducible at mid pachytene. However, from mid-pachytene to diplotene, γH2AX appeared as large discrete foci. This late repair pattern was mediated initially by NHEJ, involving Ku70 and XRCC4, which were constitutively present, and 53BP1, which appeared at sites of damage soon after irradiation. Nevertheless, 24 hours after irradiation, a HR pathway involving RAD51 but not DMC1 mostly replaced NHEJ. Additionally, we observed the occurrence of synaptonemal complex bridges between bivalents, most likely representing chromosome translocation events that may involve DMC1, RAD51 or 53BP1. Our results reinforce the idea that the early “meiotic” repair pathway that acts by default at the beginning of meiosis is replaced from mid-pachytene onwards by a “somatic-like” repair pattern. This shift might be important to resolve DNA damage (either endogenous or exogenous) that could not be repaired by the early meiotic mechanisms, for instance those in the sex chromosomes, which lack a homologous chromosome to repair with. This transition represents another layer of functional changes that occur in meiotic cells during mid pachytene, in addition to epigenetic reprograming, reactivation of transcription, changes in the gene expression profile and acquisition of competence to proceed to metaphase.

]]>
<![CDATA[<i>PLoS Genetics</i> Issue Image | Vol. 15(1) January 2019]]> https://www.researchpad.co/article/5c5ca275d5eed0c48441e41f

DNA repair during meiosis and chromosomal bridges.

Meiotic cells respond to DNA damage triggering diverse repair mechanisms in a cell cycle-dependent manner. Sequential activation of these mechanisms contribute to accurately maintain genome integrity. However, when spermatocytes are exposed to exogenous DNA damaging agents, like gamma radiation, repair homeostasis may be stressed and chromosomes sometimes engage in aberrant connections with non-homologous chromosomes. Super-resolution fluorescence image (STED) of two meiotic bivalents labelled with an antibody against the SYCP3 protein of the synaptonemal complex. Parallel lines represent the trajectory of homologous chromosomes within each bivalent. A protein filament bridges from one bivalent to the other, connecting two non-homologous chromosomes. See Enguita-Marruedo et al.

Download January's cover page.

Image Credit: Marta Martín-Ruiz

]]>
<![CDATA[Reproduction and population structure of the sea urchin Heliocidaris crassispina in its newly extended range: The Oga Peninsula in the Sea of Japan, northeastern Japan]]> https://www.researchpad.co/article/5c36680ed5eed0c4841a6fa6

Ocean warming has facilitated the range expansion of commercially important sea urchin species to higher latitudes. Heliocidaris crassispina was recorded to extend northward to Toga Bay along the Oga Peninsula, Japan following an increase in seawater temperatures, and replacement of local sea urchin species Mesocentrotus nudus. In order to identify evidence of adaptation occurring in response to a range extension of H. crassispina to the newly extended environments, we randomly collected 106 H. crassispina in August 2014 in Toga Bay, determined the growth and age composition and examined gonad traits (size, color and development). To confirm the gonad development, 30 H. crassispina with > 30 mm diameter were collected in July, August and September 2017. We found slower growth in the extended range than the central range. More delayed gonad development of males than those of females and a large variety of developmental stages in the acini of testis indicated that the spawning of both sexes of the sea urchins were asynchronous. In terms of gonad color, L* (lightness) values increased with increasing GI, while b* (yellowness) values decreased with increasing age. The population consisted of seven year-classes from 2006 to 2012, suggesting persistent juvenile recruitment. Long-term water temperature data indicated that the range extension of H. crassispina was due to ocean warming, in particular during the summer spawning season.

]]>
<![CDATA[Loss of connexin43 in murine Sertoli cells and its effect on blood-testis barrier formation and dynamics]]> https://www.researchpad.co/article/5b5acfc8463d7e11b9cf6300

Connexin43 (Cx43) is the predominant testicular gap junction protein and in cases of impaired spermatogenesis, Cx43 expression has been shown to be altered in several mammals. Amongst other functions, Cx43 is supposed to regulate junction formation of the blood-testis barrier (BTB). The aim of the present study was to investigate the expression pattern of different tight junction (TJ) proteins of the murine BTB using SC-specific Cx43 knockout mice (SCCx43KO). Adult homozygous male SCCx43KO mice (SCCx43KO-/-) predominantly show an arrest of spermatogenesis and SC-only tubules that might have been caused by an altered BTB assembly, composition or regulation. TJ molecules claudin-3, -5 and -11 were examined in adult wild type (WT) and SCCx43KO-/- mice using immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). In this context, investigation of single tubules with residual spermatogenesis in SCCx43KO-/- mice was particularly interesting to identify a potential Cx43-independent influence of germ cells (GC) on BTB composition and dynamics. In tubules without residual spermatogenesis, a diffuse cytoplasmic distribution pattern for claudin-11 protein could be demonstrated in mutant mice. Nevertheless, claudin-11 seems to form functional TJ. Claudin-3 and -5 could not be detected immunohistochemically in the seminiferous epithelium of those tubules. Correspondingly, claudin-3 and -5 mRNA expression was decreased, providing evidence of generally impaired BTB dynamics in adult KO mice. Observations of tubules with residual spermatogenesis suggested a Cx43-independent regulation of TJ proteins by GC populations. To determine initial BTB formation in peripubertal SCCx43KO-/- mice, immunohistochemical staining and qRT-PCR of claudin-11 were carried out in adolescent SCCx43KO-/- and WT mice. Additionally, BTB integrity was functionally analysed using a hypertonic glucose fixative. These analyses revealed that SCCx43KO-/- mice formed an intact BTB during puberty in the same time period as WT mice, which however seemed to be accelerated.

]]>
<![CDATA[SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis]]> https://www.researchpad.co/article/5afd69a3463d7e7322194039

Chromosome segregation errors during meiosis result in the formation of aneuploid gametes and are the leading cause of pregnancy loss and birth defects in humans. Proper chromosome segregation requires pairwise associations of maternal and paternal homologous chromosomes. Chiasmata, which are the cytological manifestations of crossovers (COs), provide a physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Although CO-promoting activities ensure a balanced number and position of COs, their identity and mechanism of action in mammals remain understudied. Previous work in yeast and Arabidopsis has shown that Zip2 and Shoc1 are ortholog proteins with an important role in promoting the formation of COs. Our work is the first study in mammals showing the in vivo and in vitro function of mouse and human SHOC1. We show that purified recombinant human SHOC1, an XPF/MUS81 family member, preferentially binds branched DNA molecules but apparently lacks in vitro endonuclease activity, despite its conserved ERCC4-(HhH)2 core structure. Cytological observations suggest that initial steps of recombination are normal in a majority of spermatocytes from SHOC1 hypomorphic mice. However, late stages of recombination appear abnormal, as chromosomal localization of MLH1 is reduced. In agreement, chiasma formation is reduced, and cells arrest at metaphase I with a few lagging chromosomes and subsequent apoptosis. This analysis of SHOC1-deficient mice and the selective localization of SHOC1 to a subset of recombination sites show that SHOC1 acts at key mid-stage steps of the CO formation process. The formation of chromosome axial elements and homologous pairing are apparently normal, but synapsis is altered with SYCP1 frequently failing to extend the full length of the chromosome axes. Finally, we describe that SHOC1 interacts with TEX11, another protein important for the formation of COs, connecting SHOC1 to chromosome axis and structure.

]]>
<![CDATA[Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster]]> https://www.researchpad.co/article/5989dadeab0ee8fa60bbaca0

Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.

]]>
<![CDATA[Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc025

Cyclin A1 (Ccna1), a member of the mammalian A type cyclins, is most abundantly expressed in spermatocytes and is essential for spermatogenesis in the mouse. Ccna1- deficient spermatocytes arrest at late meiotic prophase and undergo apoptosis. To further delineate the mechanisms and key factors involved in this process, we have examined changes in expression of genes involved in both intrinsic and extrinsic signaling pathways that trigger apoptosis in the mutant spermatocytes. Our results show that both pathways are involved, and that the factors involved in the intrinsic pathway were expressed earlier than those involved in the extrinsic pathway. We have also begun to identify in vivo Ccna1-interacting proteins, using an unbiased biochemical approach, and identified 14-3-3, a key regulator of apoptosis, as a Ccna1-interacting protein. Expression levels of 14-3-3 proteins remain unchanged between wild type and mutant testes but there were differences in the subcellular distribution. In wild type control, 14-3-3 is detected in both cytosolic and nuclear fractions whereas it is restricted to the cytoplasm in mutant testes. This differential distribution of 14-3-3 may contribute to the induction of apoptosis in Ccna1-deficient spermatocytes. These results provide insight into the apoptotic mechanisms and pathways that are triggered when progression through the meiotic cell cycle is defective in male gametogenesis.

]]>
<![CDATA[Spermitin: A Novel Mitochondrial Protein in Drosophila Spermatids]]> https://www.researchpad.co/article/5989dab5ab0ee8fa60bacbd5

Mitochondria, important energy centers in the cell, also control sperm cell morphogenesis. Drosophila spermatids have a remarkably large mitochondrial formation called the nebenkern. Immediately following meiosis during sperm development, the mitochondria in the spermatid fuse together into two large aggregates which then wrap around one another to produce the spherical nebenkern: a giant mitochondrion about 6 micrometers in diameter. The fused mitochondria play an important role in sperm tail elongation by providing a structural platform to support the elongation of sperm cells. We have identified a novel testis-specific protein, Spermitin (Sprn), a protein with a Pleckstrin homology-like (PH) domain related to Ran-binding protein 1 at its C-terminus. Fluorescence microscopy showed that Sprn localizes at mitochondria in transfected Kc167 cells, and in the nebenkern throughout spermatid morphogenesis. The role of Sprn is unclear, as sprn mutant males are fertile, and have sperm tail length comparable to the wild-type.

]]>
<![CDATA[Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice]]> https://www.researchpad.co/article/5989dab8ab0ee8fa60bad95d

After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line.

]]>
<![CDATA[Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis]]> https://www.researchpad.co/article/5989d9e2ab0ee8fa60b69f96

In this study we tested expression of tight junction proteins in human, mouse and rat and analyzed the localization of claudin-11 in testis of patients with normal and impaired spermatogenesis. Recent concepts generated in mice suggest that the stage-specifically expressed claudin-3 acts as a basal barrier, sealing the seminiferous epithelium during migration of spermatocytes. Corresponding mechanisms have never been demonstrated in humans. Testicular biopsies (n = 103) from five distinct groups were analyzed: normal spermatogenesis (NSP, n = 28), hypospermatogenesis (Hyp, n = 24), maturation arrest at the level of primary spermatocytes (MA, n = 24), Sertoli cell only syndrome (SCO, n = 19), and spermatogonial arrest (SGA, n = 8). Protein expression of claudin-3, -11 and occludin was analyzed. Human, mice and rat testis robustly express claudin-11 protein. Occludin was detected in mouse and rat and claudin-3 was found only in mice. Thus, we selected claudin-11 for further analysis of localization. In NSP, claudin-11 is located at Sertoli-Sertoli junctions and in Sertoli cell contacts towards spermatogonia. Typically, claudin-11 patches do not reach the basal membrane, unless flanked by the Sertoli cell body or patches between two Sertoli cell bodies. The amount of basal claudin-11 patches was found to be increased in impaired spermatogenesis. Only claudin-11 is expressed in all three species examined. The claudin-11 pattern is robust in man with impaired spermatogenesis, but the proportion of localization is altered in SCO and MA. We conclude that claudin-11 might represent the essential component of the BTB in human.

]]>
<![CDATA[Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements]]> https://www.researchpad.co/article/5989dac0ab0ee8fa60bb04fa

Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci) were studied in three boars (Sus scrofa domestica) carrying different chromosomal rearrangements. One (T34he) was heterozygote for the t(3;4)(p1.3;q1.5) reciprocal translocation, one (T34ho) was homozygote for that translocation, while the third (T34Inv) was heterozygote for both the translocation and a pericentric inversion inv(4)(p1.4;q2.3). All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome) and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities), and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls). Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents) seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms.

]]>
<![CDATA[UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts]]> https://www.researchpad.co/article/5989daffab0ee8fa60bc5e4a

During transcription, most eukaryotic genes generate multiple alternative cleavage and polyadenylation (APA) sites, leading to the production of transcript isoforms with variable lengths in the 3’ untranslated region (3’UTR). In contrast to somatic cells, male germ cells, especially pachytene spermatocytes and round spermatids, express a distinct reservoir of mRNAs with shorter 3’UTRs that are essential for spermatogenesis and male fertility. However, the mechanisms underlying the enrichment of shorter 3’UTR transcripts in the developing male germ cells remain unknown. Here, we report that UPF2-mediated nonsense-mediated mRNA decay (NMD) plays an essential role in male germ cells by eliminating ubiquitous genes-derived, longer 3’UTR transcripts, and that this role is independent of its canonical role in degrading “premature termination codon” (PTC)-containing transcripts in somatic cell lineages. This report provides physiological evidence supporting a noncanonical role of the NMD pathway in achieving global 3’UTR shortening in the male germ cells during spermatogenesis.

]]>
<![CDATA[BOULE, a Deleted in Azoospermia Homolog, Is Recruited to Stress Granules in the Mouse Male Germ Cells]]> https://www.researchpad.co/article/5989da31ab0ee8fa60b846d3

High temperature adversely affects normal development of male germ cells in mammals. Acute heat stress induces the formation of stress granules (SGs) in a set of male germ cells, and the SGs have been proposed to protect those cells from heat-induced apoptosis. DAZL, one of DAZ (Deleted in Azoospermia) family proteins, was shown to be an essential component of SGs, which is required for SG formation in the mouse testis. In the present study, we asked whether BOULE, the founding member of DAZ family proteins, is a component of the SGs. We show that BOULE is recruited to the SGs upon heat stress, and that these SGs are developmental stage-specific. These results suggest that DAZ family proteins may have conserved roles in the SGs of male germ cells.

]]>
<![CDATA[The spermatogenic process of the common vampire bat Desmodus rotundus under a histomorphometric view]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbfc9

Among all bat species, Desmodus rotundus stands out as one of the most intriguing due to its exclusively haematophagous feeding habits. However, little is known about their spermatogenic cycle. This study aimed at describing the spermatogenic process of common vampire bats through testicular histomorphometric characterization of adult specimens, spermatogenic production indexes, description of stages of the seminiferous epithelium cycle and estimative of the spermatogenic process duration. Morphometrical and immunohistochemical analyzes for bromodeoxiuridine were conducted under light microscopy and ultrastructural analyzes were performed under transmission electron microscopy. Vampire bats showed higher investment in gonadal tissue (gonadosomatic index of 0.54%) and in seminiferous tubules (tubulesomatic index of 0.49%) when compared to larger mammals. They also showed a high tubular length per gram of testis (34.70 m). Approximately half of the intertubular compartment was found to be comprised by Leydig cells (51.20%), and an average of 23.77x106 of these cells was found per gram of testis. The germline cells showed 16.93% of mitotic index and 2.51% of meiotic index. The overall yield of spermatogenesis was 60% and the testicular spermatic reserve was 71.44x107 spermatozoa per gram of testis. With a total spermatogenesis duration estimated at 37.02 days, vampire bats showed a daily sperm production of 86.80x106 gametes per gram of testis. These findings demonstrate a high sperm production, which is commonly observed in species with promiscuous mating system.

]]>
<![CDATA[Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein]]> https://www.researchpad.co/article/5989dabeab0ee8fa60bafe24

Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during meiotic recombination.

]]>
<![CDATA[The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo]]> https://www.researchpad.co/article/5989da98ab0ee8fa60ba29d6

In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we suggest that it may play the same role in meiosis.

]]>