ResearchPad - staining https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Mutations in <i>SPATA13/ASEF2</i> cause primary angle closure glaucoma]]> https://www.researchpad.co/article/elastic_article_15764 Glaucoma is the leading cause of irreversible blindness globally. Angle closure glaucoma accounts for 50% of all glaucoma blindness impacting quality of life and burden on health services. A number of variations in DNA appear to influence the risk of the disease. However, the biological mechanism underlying this important disease remains unclear. In this paper, we report the identification and functional characterisation of the first gene, mutation in which causes primary angle closure glaucoma in a seven generation Caucasian family. We have identified other variants in the same gene in another family and individuals with the disease. This gene is involved in cell division and is highly expressed in parts of the eye affected by the disease. Mutations in this gene appear to affect important enzyme activity involved in cell division. Identification of the disease-causing role of mutations in this gene helps to further the understanding of glaucoma aetiology and identifies potential therapeutic targets for disease management.

]]>
<![CDATA[Graphene-based 2D constructs for enhanced fibroblast support]]> https://www.researchpad.co/article/elastic_article_15755 Complex skin wounds have always been a significant health and economic problem worldwide due to their elusive and sometimes poor or non-healing conditions. If not well-treated, such wounds may lead to amputation, infections, cancer, or even death. Thus, there is a need to efficiently generate multifunctional skin grafts that address a wide range of skin conditions, including non-healing wounds, and enable the regeneration of new skin tissue. Here, we propose studying pristine graphene and two of its oxygen-functionalized derivatives—high and low-oxygen graphene films—as potential substrates for skin cell proliferation and differentiation. Using BJ cells (human foreskin-derived fibroblasts) to represent basic skin cells, we show that the changes in surface properties of pristine graphene due to oxygen functionalization do not seem to statistically impact the normal proliferation and maturation of skin cells. Our results indicate that the pristine and oxidized graphenes presented relatively low cytotoxicity to BJ fibroblasts and, in fact, support their growth and bioactivity. Therefore, these graphene films could potentially be integrated into more complex skin regenerative systems to support skin regeneration. Because graphene’s surface can be relatively easily functionalized with various chemical groups, this finding presents a major opportunity for the development of various composite materials that can act as active components in regenerative applications such as skin regeneration.

]]>
<![CDATA[Pathological and genetic aspects of spontaneous mammary gland tumor in <i>Tupaia belangeri</i> (tree shrew)]]> https://www.researchpad.co/article/elastic_article_15738 Mammary gland cancer is the most common cancer occurring in women globally. Incidences of this cancer in Japan are on the increase. Annually, more than 70,000 new cases are recorded in Japan and about 1.7 million in the world. Many cases are still difficult to cure completely, and animal models are required for the characterization of the biology, therapeutic strategy, and preventive measures for spontaneous mammary tumor. The mouse model used currently has some limitations owing to structural differences between mouse and human mammary glands. Tupaia belangeri (tree shrew), which belongs to the Tupaiidae family, shows relatively high genetic homology and structural similarity to human mammary glands. Here, we characterized the spontaneous mammary tumors in 61 female tree shrews of different ages. The incidence rate was 24.6% (15/61), and the rate of simultaneous or metachronous multiplex tumors was 60% (9/15). From the incidence pattern, some cases seemed to be of familial mammary gland tumor, as the offspring of female tree shrews No. 3 and 9 and male tree shrew No. 11 showed a high incidence rate, of 73.3% (11/15). Average incidence age for tumor development was 2 years and 3 months, and the earliest was 10 months. Histochemical analysis indicated that spontaneous mammary gland tumors in the tree shrew show the features of intraductal papillary adenomas (22 cases), except 2 tubulopapillary carcinoma cases (No. 75 and 131). All the cases were positive for the progesterone receptor, whereas 91.3% were positive for the estrogen receptor, and 4.3% were HER-2 positive. We have also confirmed the expression of nectin-4 in some mammary tumor cells. Additionally, we subjected tree shrews to cytodiagnosis or X-ray CT. Thus, the findings of this study highlight the potential of the tree shrew as a valuable new animal model for mammary gland tumor study.

]]>
<![CDATA[SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models]]> https://www.researchpad.co/article/elastic_article_14741 Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages. SULF1, produced primarily by bone marrow fibroblasts, was the main glycosaminoglycanase present, a finding validated with primary tissue specimens of PCa metastases with desmoplastic bone stroma. Expression of both HSPG2 and SULF1 was concentrated in αSMA-rich stroma near PCa tumor nests, where infiltrating pro-tumor TAMs also were present. To decipher SULF1’s role in the reactive bone stroma, we created a bone marrow biomimetic hydrogel incorporating perlecan, PCa cells, macrophages, and fibroblastic bone marrow stromal cells. Finding that M2-like macrophages increased levels of SULF1 and HSPG2 produced by fibroblasts, we examined SULF1 function in Wnt3A-mediated PCa tumoroid growth in tricultures. Comparing control or SULF1 knockout fibroblastic cells, we showed that SULF1 reduces Wnt3A-driven growth, cellularity, and cluster number of PCa cells in our 3D model. We conclude that SULF1 can suppress Wnt3A-driven growth signals in the desmoplastic stroma of PCa bone metastases, and SULF1 loss favors PCa progression, even in the presence of pro-tumorigenic TAMs.

]]>
<![CDATA[Tuning antiviral CD8 T-cell response via proline-altered peptide ligand vaccination]]> https://www.researchpad.co/article/elastic_article_14646 Viral escape mutagenesis correlates often with disease progression and represents a major hurdle for vaccination-based therapies. Here, we have designed and developed a novel generation of altered epitopes that re-establish and enhance significantly CD8+ T cell recognition of a naturally occurring viral immune escape variant. Biophysical and structural analyses provide a clear understanding of the molecular mechanisms underlying this reestablished recognition. We believe that this approach can be implemented to currently available or novel vaccination approaches to efficiently restore T cell recognition of virus escape variants to control disease progression.

]]>
<![CDATA[Neurons from human mesenchymal stem cells display both spontaneous and stimuli responsive activity]]> https://www.researchpad.co/article/elastic_article_14593 Mesenchymal stem cells have the ability to transdifferentiate into neurons and therefore one of the potential adult stem cell source for neuronal tissue regeneration applications and understanding neurodevelopmental processes. In many studies on human mesenchymal stem cell (hMSC) derived neurons, success in neuronal differentiation was limited to neuronal protein expressions which is not statisfactory in terms of neuronal activity. Established neuronal networks seen in culture have to be investigated in terms of synaptic signal transmission ability to develop a culture model for human neurons and further studying the mechanism of neuronal differentiation and neurological pathologies. Accordingly, in this study, we analysed the functionality of bone marrow hMSCs differentiated into neurons by a single step cytokine-based induction protocol. Neurons from both primary hMSCs and hMSC cell line displayed spontaneous activity (≥75%) as demonstrated by Ca++ imaging. Furthermore, when electrically stimulated, hMSC derived neurons (hMd-Neurons) matched the response of a typical neuron in the process of maturation. Our results reveal that a combination of neuronal inducers enhance differentiation capacity of bone marrow hMSCs into high yielding functional neurons with spontaneous activity and mature into electrophysiologically active state. Conceptually, we suggest these functional hMd-Neurons to be used as a tool for disease modelling of neuropathologies and neuronal differentiation studies.

]]>
<![CDATA[Clinicopathological and prognostic significance of caveolin-1 and ATG4C expression in the epithelial ovarian cancer]]> https://www.researchpad.co/article/elastic_article_14473 Altered expression of caveolin-1 (CAV1) and autophagy marker ATG4C is observed in various types of human cancers. However, the clinical significance of CAV1 and ATG4C expression in epithelial ovarian cancer (EOC) remains largely unknown. The present study aims to explore the clinicopathological value and prognostic significance of CAV1 and ATG4C expression in EOC.MethodsThe expression pattern and prognostic value of CAV1 and ATG4C mRNA in EOC were analyzed using data from the Cancer Genome Atlas (TCGA) database (N = 373). In addition, immunohistochemistry analysis was performed to detect and assay the expression of CAV1 and ATG4C proteins in tissue microarray of EOC.ResultsBased on TCGA data, Kaplan-Meier analysis indicated that patients with low CAV1 mRNA (p = 0.021) and high ATG4C mRNA (p = 0.018) expression had a significantly shorter overall survival (OS). Cox regression analysis demonstrated that the expression levels of CAV1 (p = 0.023) and ATG4C mRNA (p = 0.040) were independent prognostic factors for OS in EOC. In addition, the Concordance Index of the nomogram for OS prediction was 0.660. Immunohistochemical analysis showed the expression levels of stromal CAV1 and cancerous ATG4C proteins, and high expression of both CAV1 and ATG4C protein in the stroma were found to significantly correlate with the histologic subtypes of EOC, especially with serous subtype.ConclusionsDecreased expression of CAV1 mRNA and increased expression of ATG4C mRNA in EOC can predict poor overall survival. The expression levels of CAV1 protein in stromal cells and ATG4C protein in cancer cells are significantly associated with histologic subtypes of EOC. These findings suggest that CAV1 and ATG4C serve as useful prognostic biomarkers and candidate therapeutic targets in EOC. ]]> <![CDATA[SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans]]> https://www.researchpad.co/article/5ab4e873463d7e0cbd0422dd

Central questions in regenerative biology include how stem cells are maintained and how they transition from self-renewal to differentiation. Germline stem cells (GSCs) in Caeno-rhabditis elegans provide a tractable in vivo model to address these questions. In this system, Notch signaling and PUF RNA binding proteins, FBF-1 and FBF-2 (collectively FBF), maintain a pool of GSCs in a naïve state. An open question has been how Notch signaling modulates FBF activity to promote stem cell self-renewal. Here we report that two Notch targets, SYGL-1 and LST-1, link niche signaling to FBF. We find that SYGL-1 and LST-1 proteins are cytoplasmic and normally restricted to the GSC pool region. Increasing the distribution of SYGL-1 expands the pool correspondingly, and vast overexpression of either SYGL-1 or LST-1 generates a germline tumor. Thus, SYGL-1 and LST-1 are each sufficient to drive “stemness” and their spatial restriction prevents tumor formation. Importantly, SYGL-1 and LST-1 can only drive tumor formation when FBF is present. Moreover, both proteins interact physically with FBF, and both are required to repress a signature FBF mRNA target. Together, our results support a model in which SYGL-1 and LST-1 form a repressive complex with FBF that is crucial for stem cell maintenance. We further propose that progression from a naïve stem cell state to a state primed for differentiation relies on loss of SYGL-1 and LST-1, which in turn relieves FBF target RNAs from repression. Broadly, our results provide new insights into the link between niche signaling and a downstream RNA regulatory network and how this circuitry governs the balance between self-renewal and differentiation.

]]>
<![CDATA[Highly efficient serum-free manipulation of miRNA in human NK cells without loss of viability or phenotypic alterations is accomplished with TransIT-TKO]]> https://www.researchpad.co/article/N4e6e8e95-63ae-420d-a6d7-c2f1aa3d99e6

Natural killer (NK) cells are innate lymphocytes with functions that include target cell killing, inflammation and regulation. NK cells integrate incoming activating and inhibitory signals through an array of germline-encoded receptors to gauge the health of neighbouring cells. The reactive potential of NK cells is influenced by microRNA (miRNA), small non-coding sequences that interfere with mRNA expression. miRNAs are highly conserved between species, and a single miRNA can have hundreds to thousands of targets and influence entire cellular programs. Two miRNA species, miR-155-5p and miR-146a-5p are known to be important in controlling NK cell function, but research to best understand the impacts of miRNA species within NK cells has been bottlenecked by a lack of techniques for altering miRNA concentrations efficiently and without off-target effects. Here, we describe a non-viral and straightforward approach for increasing or decreasing expression of miRNA in primary human NK cells. We achieve >90% transfection efficiency without off-target impacts on NK cell viability, education, phenotype or function. This opens the opportunity to study and manipulate NK cell miRNA profiles and their impacts on NK cellular programs which may influence outcomes of cancer, inflammation and autoimmunity.

]]>
<![CDATA[Streptococcal H2O2 inhibits IgE-triggered degranulation of RBL-2H3 mast cell/basophil cell line by inducing cell death]]> https://www.researchpad.co/article/Nadf2e0c3-9608-4100-a6fa-f03310d30959

Mast cells and basophils are central players in allergic reactions triggered by immunoglobulin E (IgE). They have intracellular granules containing allergic mediators (e.g., histamine, serotonin, inflammatory cytokines, proteases and β-hexosaminidase), and stimulation by IgE-allergen complex leads to the release of such allergic mediators from the granules, that is, degranulation. Mast cells are residents of mucosal surfaces, including those of nasal and oral cavities, and play an important role in the innate defense system. Members of the mitis group streptococci such as Streptococcus oralis, are primary colonizers of the human oral cavity. They produce hydrogen peroxide (H2O2) as a by-product of sugar metabolism. In this study, we investigated the effects of streptococcal infection on RBL-2H3 mast cell/basophil cell line. Infection by oral streptococci did not induce degranulation of the cells. Stimulation of the RBL-2H3 cells with anti-dinitrophenol (DNP) IgE and DNP-conjugated human serum albumin triggers degranulation with the release of β-hexosaminidase. We found that S. oralis and other mitis group streptococci inhibited the IgE-triggered degranulation of RBL-2H3 cells. Since mitis group streptococci produce H2O2, we examined the effect of S. oralis mutant strain deficient in producing H2O2, and found that they lost the ability to suppress the degranulation. Moreover, H2O2 alone inhibited the IgE-induced degranulation. Subsequent analysis suggested that the inhibition of degranulation was related to the cytotoxicity of streptococcal H2O2. Activated RBL-2H3 cells produce interleukin-4 (IL-4); however, IL-4 production was not induced by streptococcal H2O2. Furthermore, an in vivo study using the murine pollen-induced allergic rhinitis model suggested that the streptococcal H2O2 reduces nasal allergic reaction. These findings reveal that H2O2 produced by oral mitis group streptococci inhibits IgE-stimulated degranulation by inducing cell death. Consequently, streptococcal H2O2 can be considered to modulate the allergic reaction in mucosal surfaces.

]]>
<![CDATA[Neuroprotective effects of exogenous erythropoietin in Wistar rats by downregulating apoptotic factors to attenuate N-methyl-D-aspartate-mediated retinal ganglion cells death]]> https://www.researchpad.co/article/N85685bba-c047-422b-abfc-358a98ed1fe7

The aim of this study was to investigate whether exogenous erythropoietin (EPO) administration attenuates N-methyl-D-aspartate (NMDA)-mediated excitotoxic retinal damage in Wistar rats. The survival rate of retinal ganglion cells (RGCs) were investigated by flat mount analysis and flow cytometry. A total of 125 male Wistar rats were randomly assigned to five groups: negative control, NMDA80 (i.e., 80 nmoles NMDA intravitreally injected), NMDA80 + 10ng EPO, NMDA80 + 50ng EPO, and NMDA80 + 250ng EPO. The NMDA80 + 50ng EPO treatment group was used to evaluate various administrated points (pre-/co-/post- administration of NMDA80). Meanwhile, the transferase dUTP Nick-End Labeling (TUNEL) assay of RGCs, the inner plexiform layer (IPL) thickness and the apoptotic signal transduction pathways of μ-calpain, Bax, and caspase 9 were assessed simultaneously using an immunohistochemical method (IHC). When EPO was co-administered with NMDA80, attenuated cell death occurred through the downregulation of the apoptotic indicators: μ-calpain was activated first (peak at ~18hrs), followed by Bax and caspase 9 (peak at ~40hrs). Furthermore, the images of retinal cross sections have clearly demonstrated that thickness of the inner plexiform layer (IPL) was significantly recovered at 40 hours after receiving intravitreal injection with NMDA80 and 50ng EPO. Exogenous EPO may protect RGCs and bipolar cell axon terminals in IPL by downregulating apoptotic factors to attenuate NMDA-mediated excitotoxic retinal damage.

]]>
<![CDATA[Plasma membrane expression of G protein-coupled estrogen receptor (GPER)/G protein-coupled receptor 30 (GPR30) is associated with worse outcome in metachronous contralateral breast cancer]]> https://www.researchpad.co/article/Naf611639-dea0-4cb3-8951-2157f0424339

Background

G protein-coupled estrogen receptor (GPER), or G protein-coupled receptor 30 (GPR30), is reported to mediate non-genomic estrogen signaling. GPR30 associates with breast cancer (BC) outcome and may contribute to tamoxifen resistance. We investigated the expression and prognostic significance of GPR30 in metachronous contralateral breast cancer (CBC) as a model of tamoxifen resistance.

Methods

Total GPR30 expression (GPR30TOT) and plasma membrane-localized GPR30 expression (GPR30PM) were analyzed by immunohistochemistry in primary (BC1; nBC1 = 559) and contralateral BC (BC2; nBC2 = 595), and in lymph node metastases (LGL; nLGL1 = 213; nLGL2 = 196). Death from BC (BCD), including BC death or death after documented distant metastasis, was used as primary end-point.

Results

GPR30PM in BC2 and LGL2 were associated with increased risk of BCD (HRBC2 = 1.7, p = 0.03; HRLGL2 = 2.0; p = 0.02). In BC1 and BC2, GPR30PM associated with estrogen receptor (ER)-negativity (pBC1<0.0001; pBC2<0.0001) and progesterone receptor (PR)-negativity (pBC1 = 0.0007; pBC2<0.0001). The highest GPR30TOT and GPR30PM were observed in triple-negative BC. GPR30PM associated with high Ki67 staining in BC1 (p<0.0001) and BC2 (p<0.0001). GPR30TOT in BC2 did not associate with tamoxifen treatment for BC1. However, BC2 that were diagnosed during tamoxifen treatment were more likely to express GPR30PM than BC2 diagnosed after treatment completion (p = 0.01). Furthermore, a trend was observed that patients with GPR30PM in an ER-positive BC2 had greater benefit from tamoxifen treatment.

Conclusion

PM-localized GPR30 staining is associated with increased risk of BC death when expressed in BC2 and LGL2. Additionally, PM-localized GPR30 correlates with prognostic markers of worse outcome, such as high Ki67 and a triple-negative subtype. Therefore, PM-localized GPR30 may be an interesting new target for therapeutic exploitation. We found no clear evidence that total GPR30 expression is affected by tamoxifen exposure during development of metachronous CBC, or that GPR30 contributes to tamoxifen resistance.

]]>
<![CDATA[Observation and quantification of the morphological effect of trypan blue rupturing dead or dying cells]]> https://www.researchpad.co/article/Nce15bf32-82da-4cd0-8031-f3eea4581b61

Trypan blue has long been the gold standard for staining dead cell to determine cell viability. The dye is excluded from membrane-intact live cells, but can enter and concentrate in membrane-compromised dead cells, rendering the cells dark blue. Over the years, there has been an understanding that trypan blue is inaccurate for cell viability under 80% without scientific support. We previously showed that trypan blue can alter the morphology of dead cells to a diffuse shape, which can lead to over-estimation of viability. Here, we investigate the origin of the dim and diffuse objects after trypan blue staining. Utilizing image and video acquisition, we show real-time transformation of cells into diffuse objects when stained with trypan blue. The same phenomenon was not observed when staining cells with propidium iodide. We also demonstrate the co-localization of trypan blue and propidium iodide, confirming these diffuse objects as cells that contain nuclei. The videos clearly show immediate cell rupturing after trypan blue contact. The formation of these diffuse objects was monitored and counted over time as cells die outside of the incubator. We hypothesize and demonstrate that rapid water influx may have caused the cells to rupture and disappear. Since some dead cells disappear after trypan blue staining, the total can be under-counted, leading to over-estimation of cell viability. This inaccuracy could affect the outcomes of cellular therapies, which require accurate measurements of immune cells that will be infused back into patients.

]]>
<![CDATA[Adrenocortical carcinoma masquerading as pheochromocytoma: a histopathologic dilemma]]> https://www.researchpad.co/article/N2abbb711-6929-4ebd-a627-293991490a7a

Summary

Adrenocortical carcinoma (ACC) is an aggressive cancer that originates in the cortex of the adrenal gland and generally has a poor prognosis. ACC is rare but can be more commonly seen in those with cancer predisposition syndromes (e.g. Li-Fraumeni and Lynch Syndrome). The diagnosis of ACC is sometimes uncertain and it requires the use of precise molecular pathology; the differential diagnosis includes pheochromocytoma, adrenal adenoma, renal carcinoma, or hepatocellular carcinoma. We describe a case of a 57-year-old woman with Lynch Syndrome and metastatic ACC who was initially diagnosed as having pheochromocytoma. The tumor was first identified at 51 years of age by ultrasound followed by a CT scan. She underwent a left adrenalectomy, and the histopathology identified pheochromocytoma. Two years later, she had tumor recurrence with imaging studies showing multiple lung nodules. Following a wedge resection by video-assisted thoracoscopic surgery (VATS), histopathology was read as metastatic pheochromocytoma at one institution and metastatic ACC at another institution. She later presented to the National Institutes of Health (NIH) where the diagnosis of ACC was confirmed. Following her ACC diagnosis, she was treated with mitotane and pembrolizumab which were stopped due to side effects and progression of disease. She is currently receiving etoposide, doxorubicin, and cisplatin (EDP). This case highlights the importance of using a multi-disciplinary approach in patient care. Thorough evaluation of the tumor’s pathology and analysis of the patient’s genetic profile are necessary to obtain the correct diagnosis for the patient and can significantly influence the course of treatment.

Learning points:

  • Making the diagnosis of ACC can be difficult as the differential diagnosis includes pheochromocytoma, adrenal adenoma, renal carcinoma, or hepatocellular carcinoma.

  • Patients with Lynch Syndrome should undergo surveillance for ACC as there is evidence of an association between Lynch Syndrome and ACC.

  • Conducting a complete tumor immunoprofile and obtaining a second opinion is very important in cases of suspected ACC in order to confirm the proper diagnosis.

  • A multi-disciplinary approach including genetic testing and a thorough evaluation of the tumor’s pathology is imperative to ensuring that the patient receives an accurate diagnosis and the appropriate treatment.

]]>
<![CDATA[Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing]]> https://www.researchpad.co/article/5c8c1978d5eed0c484b4d71e

Various strategies have been attempted to replace esophageal defects with natural or artificial substitutes using tissue engineering. However, these methods have not yet reached clinical application because of the high risks related to their immunogenicity or insufficient biocompatibility. In this study, we developed a scaffold-free structure with a mixture of cell types using bio-three-dimensional (3D) printing technology and assessed its characteristics in vitro and in vivo after transplantation into rats. Normal human dermal fibroblasts, human esophageal smooth muscle cells, human bone marrow-derived mesenchymal stem cells, and human umbilical vein endothelial cells were purchased and used as a cell source. After the preparation of multicellular spheroids, esophageal-like tube structures were prepared by bio-3D printing. The structures were matured in a bioreactor and transplanted into 10-12-week-old F344 male rats as esophageal grafts under general anesthesia. Mechanical and histochemical assessment of the structures were performed. Among 4 types of structures evaluated, those with the larger proportion of mesenchymal stem cells tended to show greater strength and expansion on mechanical testing and highly expressed α-smooth muscle actin and vascular endothelial growth factor on immunohistochemistry. Therefore, the structure with the larger proportion of mesenchymal stem cells was selected for transplantation. The scaffold-free structures had sufficient strength for transplantation between the esophagus and stomach using silicon stents. The structures were maintained in vivo for 30 days after transplantation. Smooth muscle cells were maintained, and flat epithelium extended and covered the inner surface of the lumen. Food had also passed through the structure. These results suggested that the esophagus-like scaffold-free tubular structures created using bio-3D printing could hold promise as a substitute for the repair of esophageal defects.

]]>
<![CDATA[Aqueous extract of Hibiscus sabdariffa inhibits pedestal induction by enteropathogenic E. coli and promotes bacterial filamentation in vitro]]> https://www.researchpad.co/article/5c8c197bd5eed0c484b4d750

Diarrheic diseases account for the annual death of approximately 1.9 million children under the age of 5 years, and it is a major cause of work absenteeism in developed countries. As diarrheagenic bacteria, enteropathogenic Escherichia coli (EPEC) attach to cells in the small intestine, causing local disappearance of microvilli and inducing the formation of actin-rich pedestals that disrupt the intestinal barrier and help EPEC adhere to and infect intestinal cells. Antibiotics and other bioactive compounds can often be found by analyzing traditional medicines. Here a crude aqueous extract of Hibiscus sabdariffa, which typically grows in subtropical and tropical areas and is a popular medicinal tisane in many countries, was analyzed for antibacterial activity against EPEC. In standard microdilution assays, the extract showed a minimum inhibitory concentration of 6.5 mg/ml against EPEC growth. Time-kill kinetics assays demonstrated significant 24 h bactericidal activity at 25 mg/ml. The extract is able to impede pedestal induction. Not only did the extract inhibit preformed pedestals but it prevented pedestal induction as well. Remarkably, it also promoted the formation of EPEC filaments, as observed with other antibiotics. Our results in vitro support the potential of Hibiscus sabdariffa as an antimicrobial agent against EPEC.

]]>
<![CDATA[VGLL4 plays a critical role in heart valve development and homeostasis]]> https://www.researchpad.co/article/5c784fb6d5eed0c4840073d9

Heart valve disease is a major clinical problem worldwide. Cardiac valve development and homeostasis need to be precisely controlled. Hippo signaling is essential for organ development and tissue homeostasis, while its role in valve formation and morphology maintenance remains unknown. VGLL4 is a transcription cofactor in vertebrates and we found it was mainly expressed in valve interstitial cells at the post-EMT stage and was maintained till the adult stage. Tissue specific knockout of VGLL4 in different cell lineages revealed that only loss of VGLL4 in endothelial cell lineage led to valve malformation with expanded expression of YAP targets. We further semi-knockout YAP in VGLL4 ablated hearts, and found hyper proliferation of arterial valve interstitial cells was significantly constrained. These findings suggest that VGLL4 is important for valve development and manipulation of Hippo components would be a potential therapy for preventing the progression of congenital valve disease.

]]>
<![CDATA[Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development]]> https://www.researchpad.co/article/5c784fb4d5eed0c4840073c4

The current understanding of mammalian kidney development is largely based on mouse models. Recent landmark studies revealed pervasive differences in renal embryogenesis between mouse and human. The scarcity of detailed gene expression data in humans therefore hampers a thorough understanding of human kidney development and the possible developmental origin of kidney diseases. In this paper, we present a single-cell transcriptomics study of the human fetal kidney. We identified 22 cell types and a host of marker genes. Comparison of samples from different developmental ages revealed continuous gene expression changes in podocytes. To demonstrate the usefulness of our data set, we explored the heterogeneity of the nephrogenic niche, localized podocyte precursors, and confirmed disease-associated marker genes. With close to 18,000 renal cells from five different developmental ages, this study provides a rich resource for the elucidation of human kidney development, easily accessible through an interactive web application.

]]>
<![CDATA[Ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro]]> https://www.researchpad.co/article/5c89771fd5eed0c4847d24e7

Glioblastoma is the leading malignant glioma with a poor prognosis. This study aimed to investigate the antitumor effects of natural killer cells in combination with temozolomide as the standard chemotherapeutic agent for glioblastoma. Using a simple, feeder-less, and chemically defined culture method, we expanded human peripheral blood mononuclear cells and assessed the receptor expression, natural killer cell activity, and regulatory T cell frequency in expanded cells. Next, using the standard human glioblastoma cell lines (temozolomide-sensitive U87MG, temozolomide-resistant T98G, and LN-18), we assessed the ligand expressions of receptors on natural killer cells. Furthermore, the antitumor effects of the combination of the expanded natural killer cells and temozolomide were assessed using growth inhibition assays, apoptosis detection assays, and senescence-associated β-galactosidase activity assays in the glioblastoma cell lines. Novel culture systems were sufficient to attain highly purified (>98%), expanded (>440-fold) CD3/CD56+ peripheral blood-derived natural killer cells. We designated the expanded population as genuine induced natural killer cells. Genuine induced natural killer cells exhibited a high natural killer activity and low regulatory T cell frequency compared with lymphokine-activated killer cells. Growth inhibition assays revealed that genuine induced natural killer cells inhibited the glioblastoma cell line growth but enhanced temozolomide-induced inhibition effects in U87MG. Apoptosis detection assays revealed that genuine induced natural killer cells induced apoptosis in the glioblastoma cell lines. Furthermore, senescence-associated β-galactosidase activity assays revealed that temozolomide induced senescence in U87MG. Genuine induced natural killer cells induce apoptosis in temozolomide-sensitive and temozolomide-resistant glioblastoma cells and enhances temozolomide-induced antitumor effects in different mechanisms. Hence, the combination of genuine induced natural killer cells and temozolomide may prove to be a promising immunochemotherapeutic approach in patients with glioblastoma if the antitumor effects in vivo can be demonstrated.

]]>
<![CDATA[Identification of Merkel cells associated with neurons in engineered skin substitutes after grafting to full thickness wounds]]> https://www.researchpad.co/article/5c8823d9d5eed0c484639153

Engineered skin substitutes (ESS), prepared using primary human fibroblasts and keratinocytes with a biopolymer scaffold, were shown to provide stable closure of excised burns, but relatively little is known about innervation of ESS after grafting. This study investigated innervation of ESS and, specifically, whether Merkel cells are present in healed grafts. Merkel cells are specialized neuroendocrine cells required for fine touch sensation in skin. We discovered cells positive for keratin 20 (KRT20), a general marker for Merkel cells, in the basal epidermis of ESS after transplantation to mice, suggesting the presence of Merkel cells. Cells expressing KRT20 were not observed in ESS in vitro. However, widely separated KRT20-positive cells were observed in basal epidermis of ESS by 2 weeks after grafting. By 4 weeks, these cells increased in number and expressed keratins 18 and 19, additional Merkel cells markers. Putative Merkel cell numbers increased further between weeks 6 and 14; their densities varied widely and no specific pattern of organization was observed, similar to Merkel cell localization in human skin. KRT20-positive cells co-expressed epidermal markers E-cadherin and keratin 15, suggesting derivation from the epidermal lineage, and neuroendocrine markers synaptophysin and chromogranin A, consistent with their identification as Merkel cells. By 4 weeks after grafting, some Merkel cells in engineered skin were associated with immature afferents expressing neurofilament-medium. By 8 weeks, Merkel cells were complexed with more mature neurons expressing neurofilament-heavy. Positive staining for human leukocyte antigen demonstrated that the Merkel cells in ESS were derived from grafted human cells. The results identify, for the first time, Merkel cell-neurite complexes in engineered skin in vivo. This suggests that fine touch sensation may be restored in ESS after grafting, although this must be confirmed with future functional studies.

]]>