ResearchPad - stromal-cells https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models]]> https://www.researchpad.co/article/elastic_article_14741 Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages. SULF1, produced primarily by bone marrow fibroblasts, was the main glycosaminoglycanase present, a finding validated with primary tissue specimens of PCa metastases with desmoplastic bone stroma. Expression of both HSPG2 and SULF1 was concentrated in αSMA-rich stroma near PCa tumor nests, where infiltrating pro-tumor TAMs also were present. To decipher SULF1’s role in the reactive bone stroma, we created a bone marrow biomimetic hydrogel incorporating perlecan, PCa cells, macrophages, and fibroblastic bone marrow stromal cells. Finding that M2-like macrophages increased levels of SULF1 and HSPG2 produced by fibroblasts, we examined SULF1 function in Wnt3A-mediated PCa tumoroid growth in tricultures. Comparing control or SULF1 knockout fibroblastic cells, we showed that SULF1 reduces Wnt3A-driven growth, cellularity, and cluster number of PCa cells in our 3D model. We conclude that SULF1 can suppress Wnt3A-driven growth signals in the desmoplastic stroma of PCa bone metastases, and SULF1 loss favors PCa progression, even in the presence of pro-tumorigenic TAMs.

]]>
<![CDATA[Clinicopathological and prognostic significance of caveolin-1 and ATG4C expression in the epithelial ovarian cancer]]> https://www.researchpad.co/article/elastic_article_14473 Altered expression of caveolin-1 (CAV1) and autophagy marker ATG4C is observed in various types of human cancers. However, the clinical significance of CAV1 and ATG4C expression in epithelial ovarian cancer (EOC) remains largely unknown. The present study aims to explore the clinicopathological value and prognostic significance of CAV1 and ATG4C expression in EOC.MethodsThe expression pattern and prognostic value of CAV1 and ATG4C mRNA in EOC were analyzed using data from the Cancer Genome Atlas (TCGA) database (N = 373). In addition, immunohistochemistry analysis was performed to detect and assay the expression of CAV1 and ATG4C proteins in tissue microarray of EOC.ResultsBased on TCGA data, Kaplan-Meier analysis indicated that patients with low CAV1 mRNA (p = 0.021) and high ATG4C mRNA (p = 0.018) expression had a significantly shorter overall survival (OS). Cox regression analysis demonstrated that the expression levels of CAV1 (p = 0.023) and ATG4C mRNA (p = 0.040) were independent prognostic factors for OS in EOC. In addition, the Concordance Index of the nomogram for OS prediction was 0.660. Immunohistochemical analysis showed the expression levels of stromal CAV1 and cancerous ATG4C proteins, and high expression of both CAV1 and ATG4C protein in the stroma were found to significantly correlate with the histologic subtypes of EOC, especially with serous subtype.ConclusionsDecreased expression of CAV1 mRNA and increased expression of ATG4C mRNA in EOC can predict poor overall survival. The expression levels of CAV1 protein in stromal cells and ATG4C protein in cancer cells are significantly associated with histologic subtypes of EOC. These findings suggest that CAV1 and ATG4C serve as useful prognostic biomarkers and candidate therapeutic targets in EOC. ]]> <![CDATA[Connective tissue growth factor mediates transforming growth factor β-induced collagen expression in human endometrial stromal cells]]> https://www.researchpad.co/article/5c59feb0d5eed0c4841352f2

Background

Adenomyosis is a medical condition defined by the abnormal presence of endometrial tissue within the myometrium, in which fibrosis occurs with new collagen deposition and myofibroblast differentiation. In this study, the effect of several mediators and growth factors on collagen expression was investigated on human endometrial stromal cells (fibroblasts) derived from adenomyotic endometrium.

Experimental approach

RT-PCR, Western blot analysis, pharmacological interventions and siRNA interference were applied to primary cultured human endometrial stromal cells (fibroblasts). Immunohistochemistry was used to analyze protein expression in adenomyotic endometrium tissue specimens.

Results

Of the tested mediators, transforming growth factor β1 (TGFβ1) and its isoforms were effective to induce collagen and connective tissue growth factor (CTGF) expression. Collagen and CTGF induction by TGFβ1 could be reduced by the inhibitors targeting DNA transcription, protein translation, and Smad2/3 signaling. Interestingly, TGFβ1 induced Smad2/3 phosphorylation and CTGF mRNA expression, but not collagen mRNA expression, suggesting that TGFβ1 mediates collagen expression through CTGF induction and Smad2/3 activation. In parallel, TGFβ1 and CTGF also induced expression of heat shock protein (HSP) 47, a protein required for the synthesis of several types of collagens. However, only CTGF siRNA knockdown, could compromise TGFβ1-induced collagen expression. Finally, the immunohistochemistry revealed vimentin- and α-SMA-positive staining for (myo)fibroblasts, TGFβ1, collagen, and CTGF in the subepithelial stroma region of human adenomyotic endometria.

Conclusion and implications

We reveal here that TGFβ1, collagen, and CTGF are expressed in the stroma of adenomyotic endometria and demonstrate that TGFβ1 can induce collagen production in endometrium-derived fibroblasts through cellular Smad2/3-dependent signaling pathway and CTGF expression, suggesting that endometrial TGFβ may take part in the pathogenesis of adenomyosis and ectopic endometrium may participate in uterine adenomyosis.

]]>
<![CDATA[Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors]]> https://www.researchpad.co/article/5c141e8ad5eed0c484d27173

Cancer metabolism has received renewed interest as a potential target for cancer therapy. In this study, we use a multi-scale modeling approach to interrogate the implications of three metabolic scenarios of potential clinical relevance: the Warburg effect, the reverse Warburg effect and glutamine addiction. At the intracellular level, we construct a network of central metabolism and perform flux balance analysis (FBA) to estimate metabolic fluxes; at the cellular level, we exploit this metabolic network to calculate parameters for a coarse-grained description of cellular growth kinetics; and at the multicellular level, we incorporate these kinetic schemes into the cellular automata of an agent-based model (ABM), iDynoMiCS. This ABM evaluates the reaction-diffusion of the metabolites, cellular division and motion over a simulation domain. Our multi-scale simulations suggest that the Warburg effect provides a growth advantage to the tumor cells under resource limitation. However, we identify a non-monotonic dependence of growth rate on the strength of glycolytic pathway. On the other hand, the reverse Warburg scenario provides an initial growth advantage in tumors that originate deeper in the tissue. The metabolic profile of stromal cells considered in this scenario allows more oxygen to reach the tumor cells in the deeper tissue and thus promotes tumor growth at earlier stages. Lastly, we suggest that glutamine addiction does not confer a selective advantage to tumor growth with glutamine acting as a carbon source in the tricarboxylic acid (TCA) cycle, any advantage of glutamine uptake must come through other pathways not included in our model (e.g., as a nitrogen donor). Our analysis illustrates the importance of accounting explicitly for spatial and temporal evolution of tumor microenvironment in the interpretation of metabolic scenarios and hence provides a basis for further studies, including evaluation of specific therapeutic strategies that target metabolism.

]]>
<![CDATA[Inhibition of chronic prostate inflammation by hyaluronic acid through an immortalized human prostate stromal cell line model]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be00cf

Benign prostatic hyperplasia (BPH) is the most common urologic disease among elderly men. A well-established in vitro cell model is required to determine the therapeutic mechanism of BPH inflammation. In this study, we attempted to establish an immortalized human prostate stromal cell line by transfecting with HPV-16 E6/E7 and designated as ihPSC. No significant difference was found in fibroblast-like morphology between primary hPSC and ihPSC. The ihPSC possessed a significantly higher cell proliferation rate than primary hPSC. The prostate-specific markers and proteins including cytoskeleton (α-SMA and vimentin) and smooth muscle (calponin), especially the androgen receptor (AR) were also examined in ihPSC, almost identical to the primary hPSC. To create an in vitro model featuring chronic prostatic inflammation, ihPSC was stimulated with IFN-γ+IL-17 and then treated with the high molecular weight hyaluronic acid hylan G-F 20 as an alternative strategy for inhibiting BPH inflammation. Hylan G-F 20 could dose-dependently diminish the inflammation-induced proliferation in ihPSC. The enhanced expressions of inflammatory molecules including IL-1β, IL-6, IL-8, cyclooxygenase 2 (COX2), inducible nitrogen oxide synthase (iNOS), and Toll-like receptor 4 (TLR4) were all abolished by hylan G-F 20. For inflammatory signaling, hylan G-F 20 can also diminish the IFN-γ+IL-17-increased expression of iNOS and p65 in ihPSC. These findings suggest that ihPSC could provide a mechanism-based platform for investigating prostate inflammation. The hylan G-F 20 showed strong anti-inflammatory effects by decreasing inflammatory cytokines and signalings in the ihPSC, indicating its therapeutic potentials in BPH treatment in the future.

]]>
<![CDATA[The Immunologic Properties of Bone Morphogenic Protein Receptor IB Positive Subpopulation before and after Osteogenic Differentiation in Mouse Dermis]]> https://www.researchpad.co/article/5989d9d4ab0ee8fa60b65554

We have previously reported that human dermal bone morphogenic protein receptor (BMPR) IB positive subpopulation had a high osteogenic differentiation potential and may be a promising cell source for allogeneic bone tissue engineering. In this study, the immunologic properties of dermal BMPR-IB+ subpopulation before and after osteogenic differentiation were reported. The results confirmed that dermal BMPR-IB+ cells possessed a similar osteogenic differentiation potential with bone marrow mesenchymal stromal cells in a mouse model. Furthermore, the expression of immune rejection-related surface antigens such as major histocompatibility class II and co-stimulatory proteins (CD40, CD80, and CD86) were absent on dermal BMPRIB+ cells. Dermal BMPRIB+ cells elicited no proliferation of allogeneic splenocytes and suppressed the proliferation of stimulated immune cells. Interestingly, osteogenic differentiation in vitro had no adverse effect on the immunological features of these cells. Most importantly, inducible NO synthase (iNOS) was involved in immunoregulatory effects by undifferentiated BMPRIB+ fibroblasts, whereas indoleamine 2,3-dioxygenase (IDO) activity was related to mediating immunomodulatory function by osteogenic differentiated BMPRIB+ fibroblasts. In conclusion, dermal BMPRIB+ cells have a low immunogenicity and possess immunosuppressive capacity before and after osteogenic differentiation in vitro, which would facilitate the allotransplantation in the future. However, mechanisms mediating immunoregulatory property between undifferentiated and osteogenic differentiated BMPRIB+ fibroblasts may be different and need further investigation.

]]>
<![CDATA[Histopathology and enhanced detection of tumor invasion of peritoneal membranes]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbe37

Tumor invasion of the peritoneal membrane may have an adverse prognostic significance, but its histopathologic features can be diagnostically difficult to recognize. We observed that local peritoneal injury associated with tumor invasion is characterized by activation and proliferation of serosal stromal cells that express cytokeratin, a characteristic property of injured serosal membranes that may have diagnostic utility. To explore this, we examined 120 primary tumors of the gastrointestinal tract and pancreaticobiliary system using cytokeratin and elastic stains to assess for tumor invasion of peritoneal membranes. Peritoneal invasion by tumor was associated with retraction, splaying, and destruction of the elastic lamina and proliferation of keratin-expressing stromal cells of serosal membranes. All 82 peritoneal invasive tumors were characterized by neoplastic cells that invaded the elastic lamina and the serosal connective tissue with neoplastic cells that abutted or were surrounded by keratin-positive stromal cells, whereas all 38 tumors limited to the subserosa showed none of these features. The diagnosis of tumor invasion of peritoneal membranes is enhanced by the combined use of cytokeratin and elastic stains, which in turn would enable better histopathologic correlation with patient treatment and outcome.

]]>
<![CDATA[Type of Inflammation Differentially Affects Expression of Interleukin 1β and 6, Tumor Necrosis Factor-α and Toll-Like Receptors in Subclinical Endometritis in Mares]]> https://www.researchpad.co/article/5989daeeab0ee8fa60bc0204

Mares that fail to conceive or lose their embryos, without showing typical signs of clinical endometritis, should be suspected of subclinical endometritis (SE). In this study, the question was addressed: does SE fully activate selected mechanisms of innate immunity in mares? For this aim, expression of mRNAs for Toll-like Receptor 2 and 4 (TLR 2/4), interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF) was examined in control mares versus either mares suffering from chronic endometritis (ChE) or subacute suppurative endometritis (SSE). The concentrations of IL-1β, IL-6 and TNF-α in supernatants from endometrial tissue cultures after 4 h incubation were measured using the enzyme immunoassay (EIA) method. Eighty-two warmblood mares, of known breeding history, were enrolled in this study. Based on histopathological assessment, mares were classified as suffering from ChE, SSE or as being healthy. In addition, immuno-localization of both TLR2 and TLR4 as well as TNF-α was investigated in the equine endometria. The mRNA expression of TLR2 (P < 0.01), IL-1β (P < 0.0001), IL-6 (P < 0.0001) and TLR4 and TNF (P < 0.05) was up-regulated in endometria of mares suffering from SSE compared with unaffected mares. Concentrations of IL-6 and TNF-α were increased only in mares exhibiting SSE, compared with unaffected (P < 0.01 for both) and ChE mares (P < 0.05 for both). Immuno-localization of TNF-α and TLRs was confirmed, both in unaffected and SE-affected endometria, and was present in the luminal and glandular epithelia and stromal cells. The severity of inflammation impacts the immune response and fosters activation of innate immunity mechanisms, as observed in the endometria of mares. The intracellular localization of TLRs and TNF-α in the endometria indicates a key role of endometrial epithelial and stromal cells in the immune response and inflammation.

]]>
<![CDATA[Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis]]> https://www.researchpad.co/article/5989dafaab0ee8fa60bc4661

Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and differentiation of human CD133+ cell-derived EPCs. We established stromal systems using HESS-5 murine bone marrow cells transfected with human Jagged-1 (hJagged-1) or human Dll-1 (hDll-1). CD133+ cord blood cells were co-cultured with the stromal cells for 7 days, and then their proliferation, differentiation, and EPC colony formation was evaluated. We found that hJagged-1 induced the proliferation and differentiation of CD133+ cord blood EPCs. In contrast, hDll-1 had little effect. CD133+ cells stimulated by hJagged-1 differentiated into CD31+/KDR+ cells, expressed vascular endothelial growth factor-A, and showed enhanced EPC colony formation compared with CD133+ cells stimulated by hDll-1. To evaluate the angiogenic properties of hJagged-1- and hDll-1-stimulated EPCs in vivo, we transplanted these cells into the ischemic hindlimbs of nude mice. Transplantation of EPCs stimulated by hJagged-1, but not hDll-1, increased regional blood flow and capillary density in ischemic hindlimb muscles. This is the first study to show that human Notch signaling influences EPC proliferation and differentiation in the bone marrow microenvironment. Human Jagged-1 induced the proliferation and differentiation of CD133+ cord blood progenitors compared with hDll-1. Thus, hJagged-1 signaling in the bone marrow niche may be used to expand EPCs for therapeutic angiogenesis.

]]>
<![CDATA[Tumor-Activated Mesenchymal Stromal Cells Promote Osteosarcoma Stemness and Migratory Potential via IL-6 Secretion]]> https://www.researchpad.co/article/5989da29ab0ee8fa60b81c5e

Osteosarcoma (OS) is an aggressive bone malignancy with a high relapse rate despite combined treatment with surgery and multiagent chemotherapy. As for other cancers, OS-associated microenvironment may contribute to tumor initiation, growth, and metastasis. We consider mesenchymal stromal cells (MSC) as a relevant cellular component of OS microenvironment, and have previously found that the interaction between MSC and tumor cells is bidirectional: tumor cells can modulate their peripheral environment that in turn becomes more favorable to tumor growth through metabolic reprogramming. Here, we determined the effects of MSC on OS stemness and migration, two major features associated with recurrence and chemoresistance. The presence of stromal cells enhanced the number of floating spheres enriched in cancer stem cells (CSC) of the OS cell population. Furthermore, the co-culturing with MSC stimulated the migratory capacity of OS via TGFβ1 and IL-6 secretion, and the neutralizing antibody anti-IL-6 impaired this effect. Thus, stromal cells in combination with OS spheres exploit a vicious cycle where the presence of CSC stimulates mesenchymal cytokine secretion, which in turn increases stemness, proliferation, migration, and metastatic potential of CSC, also through the increase of expression of adhesion molecules like ICAM-1. Altogether, our data corroborate the concept that a comprehensive knowledge of the interplay between tumor and stroma that also includes the stem-like fraction of tumor cells is needed to develop novel and effective anti-cancer therapies.

]]>
<![CDATA[Epithelial to Stromal Re-Distribution of Primary Cilia during Pancreatic Carcinogenesis]]> https://www.researchpad.co/article/5989da93ab0ee8fa60ba0c63

Background

The Hedgehog (HH) pathway is a mediator in pancreatic ductal adenocarcinoma (PDAC). Surprisingly, previous studies suggested that primary cilia (PC), the essential organelles for HH signal transduction, were lost in PDAC. The aim of this study was to determine the presence of PC in human normal pancreas, chronic pancreatitis, and during carcinogenesis to PDAC with focus on both epithelia and stroma.

Methods

PC were analyzed in paraffin sections from normal pancreas, chronic pancreatitis, intraductal papillary-mucinous neoplasia, and PDAC, as well as in primary human pancreatic stellate cells (PSC) and pancreatic cancer cell lines by double immunofluorescence staining for acetylated α-tubuline and γ-tubuline. Co-staining for the HH receptors PTCH1, PTCH2 and SMO was also performed.

Results

PC are gradually lost during pancreatic carcinogenesis in the epithelium: the fraction of cells with PC gradually and significantly decreased from 32% in ducts of normal pancreas, to 21% in ducts of chronic pancreatitis, to 18% in PanIN1a, 6% in PanIN2, 3% in PanIN3 and to 1.2% in invasive PDAC. However, this loss of PC in the neoplastic epithelium is accompanied by a gain of PC in the surrounding stroma. The fraction of stromal cells with PC significantly increased from 13% around normal ducts to about 30% around PanIN and PDAC. HH-receptors were detected in tumor stroma but not in epithelial cells. PC are also present in PSC and pancreatic cancer cell lines.

Conclusion

PC are not lost during pancreatic carcinogenesis but re-distributed from the epithelium to the stroma. This redistribution may explain the re-direction of HH signaling towards the stroma during pancreatic carcinogenesis.

]]>
<![CDATA[Hypoxia-Controlled EphA3 Marks a Human Endometrium-Derived Multipotent Mesenchymal Stromal Cell that Supports Vascular Growth]]> https://www.researchpad.co/article/5989db00ab0ee8fa60bc642c

Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF)-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs), but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.

]]>
<![CDATA[Interactions among Lung Cancer Cells, Fibroblasts, and Macrophages in 3D Co-Cultures and the Impact on MMP-1 and VEGF Expression]]> https://www.researchpad.co/article/5989d9ddab0ee8fa60b68422

In vitro cell-based models of lung cancer are frequently employed to study invasion and the mechanisms behind metastasis. However, these models often study only one cell type with two-dimensional (2D) monolayer cell cultures, which do not accurately reflect the complexity of inflammation in vivo. Here, a three-dimensional (3D) cell co-culture collagen gel model was employed, containing human lung adenocarcinoma cells (HCC), human lung fibroblast cells (MRC-5), and macrophages. Cell culture media and cell images were collected, and matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor (VEGF) production was monitored under different cell culture conditions. We found that simulating hypoxia and/or serum starvation conditions induced elevated secretion of VEGF in the 3D co-culture model in vitro, but not MMP-1; the morphology of HCC in the 2D versus the 3D co-culture system was extremely different. MMP-1 and VEGF were secreted at higher levels in mixed cell groups rather than mono-culture groups. Therefore, incorporating lung cancer cells, fibroblasts, and macrophages may better reflect physiological metastasis mechanisms compared to mono-culture systems. Tumour stromal cells, macrophages, and fibroblast cells may promote invasion and metastasis, which also provides a new direction for the design of therapies targeted at destroying the stroma of tumor tissues.

]]>
<![CDATA[Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL]]> https://www.researchpad.co/article/5989da12ab0ee8fa60b7a0e7

Microenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete. Here we show that integrin alpha 2b (ITGA2b), known to be carried by platelets, megakaryocytes and hematopoietic progenitors, is expressed by a lymph node subset of LECs, residing in medullary, cortical and subcapsular sinuses. In the subcapsular sinus, the floor but not the ceiling layer expresses the integrin, being excluded from ACKR4+ LECs but overlapping with MAdCAM-1 expression. ITGA2b expression increases in response to immunization, raising the possibility that heterogeneous ITGA2b levels reflect variation in exposure to activation signals. We show that alterations of the level of receptor activator of NF-κB ligand (RANKL), by overexpression, neutralization or deletion from stromal marginal reticular cells, affected the proportion of ITGA2b+ LECs. Lymph node LECs but not peripheral LECs express RANK. In addition, we found that lymphotoxin-β receptor signaling likewise regulated the proportion of ITGA2b+ LECs. These findings demonstrate that stromal reticular cells activate LECs via RANKL and support the action of hematopoietic cell-derived lymphotoxin.

]]>
<![CDATA[P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate]]> https://www.researchpad.co/article/5989db16ab0ee8fa60bcd213

Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under experimental conditions.

]]>
<![CDATA[Rosiglitazone Promotes Bone Marrow Adipogenesis to Impair Myelopoiesis under Stress]]> https://www.researchpad.co/article/5989d9f4ab0ee8fa60b6fb08

Objective

The therapeutic use of thiazolidinediones (TZDs) causes unwanted hematological side effects, although the underlying mechanisms of these effects are poorly understood. This study tests the hypothesis that rosiglitazone impairs the maintenance and differentiation of hematopoietic stem/progenitor cells, which ultimately leads to hematological abnormalities.

Methods

Mice were fed a rosiglitazone-supplemented diet or a normal diet for 6 weeks. To induce hematopoietic stress, all mice were injected once with 250 mg/kg 5-fluorouracil (5-Fu) intraperitoneally. Next, hematopoietic recovery, hematopoietic stem/progenitor cells (HSPCs) subsets, and myeloid differentiation after 5-Fu treatment were evaluated. The adipogenesis induced by rosiglitazone was assessed by histopathology and oil red O staining. The effect of adipocytes on HSPCs was studied with an in vitro co-culture system.

Results

Rosiglitazone significantly enhanced bone marrow adipogenesis and delayed hematopoietic recovery after 5-Fu treatment. Moreover, rosiglitazone inhibited proliferation of a granulocyte/monocyte progenitor (GMP) cell population and granulocyte/macrophage colony-stimulating factor (GM-CSF) colonies, although the proliferation and mobilization of Lin-c-kit+Sca-1+ cells (LSK) was maintained following hematopoietic stress. These effects could be partially reversed by the selective PPARγ antagonist BADGE. Finally, we demonstrated in a co-culture system that differentiated adipocytes actively suppressed the myeloid differentiation of HSPCs.

Conclusion

Taken together, our results demonstrate that rosiglitazone inhibits myeloid differentiation of HSPCs after stress partially by inducing bone marrow adipogenesis. Targeting the bone marrow microenvironment might be one mechanism by which rosiglitazone impairs stress-induced hematopoiesis.

]]>
<![CDATA[The Mare Model to Study the Effects of Ovarian Dynamics on Preantral Follicle Features]]> https://www.researchpad.co/article/5989da8fab0ee8fa60b9f761

Ovarian tissue collected by biopsy procedures allows the performance of many studies with clinical applications in the field of female fertility preservation. The aim of the present study was to investigate the influence of reproductive phase (anestrous vs. diestrous) and ovarian structures (antral follicles and corpus luteum) on the quality, class distribution, number, and density of preantral follicles, and stromal cell density. Ovarian fragments were harvested by biopsy pick-up procedures from mares and submitted to histological analysis. The mean preantral follicle and ovarian stromal cell densities were greater in the diestrous phase and a positive correlation of stromal cell density with the number and density of preantral follicles was observed. The mean area (mm2) of ovarian structures increased in the diestrous phase and had positive correlations with number of preantral follicles, follicle density, and stromal cell density. Biopsy fragments collected from ovaries containing an active corpus luteum had a higher follicle density, stromal cell density, and proportion of normal preantral follicles. In conclusion, our results showed: (1) the diestrous phase influenced positively the preantral follicle quality, class distribution, and follicle and stromal cell densities; (2) the area of ovarian structures was positively correlated with the follicle and stromal cell densities; and (3) the presence of an active corpus luteum had a positive effect on the quality of preantral follicles, and follicle and stromal densities. Therefore, herein we demonstrate that the presence of key ovarian structures favors the harvest of ovarian fragments containing an appropriate number of healthy preantral follicles.

]]>
<![CDATA[Transcript abundance of stromal and thecal cell related genes during bovine ovarian development]]> https://www.researchpad.co/article/5c900d20d5eed0c48407e0f9

Movement and expansion of mesonephric-derived stroma appears to be very important in the development of the ovary. Here, we examined the expression of 24 genes associated with stroma in fetal ovaries during gestation (n = 17; days 58–274) from Bos taurus cattle. RNA was isolated from ovaries for quantitative RT-PCR. Expression of the majority of genes in TGFβ signalling, stromal transcription factors (NR2F2, AR), and some stromal matrix genes (COL1A1, COL3A1 and FBN1, but not FBN3) showed a positive linear increase with gestational age. Expression of genes associated with follicles (INSL3, CYP17A1, CYP11A1 and HSD3B1), was low until mid-gestation and then increased with gestational age. LHCGR showed an unusual bimodal pattern; high levels in the first and last trimesters. RARRES1 and IGFBP3 also increased with gestational age. To relate changes in gene expression in stromal cells with that in non stromal cells during development of the ovary we combined the data on the stromal genes with another 20 genes from non stromal cells published previously and then performed hierarchical clustering analysis. Three major clusters were identified. Cluster 1 genes (GATA4, FBN3, LHCGR, CYP19A1, ESR2, OCT4, DSG2, TGFB1, CCND2, LGR5, NR5A1) were characterised by high expression only in the first trimester. Cluster 2 genes (FSHR, INSL3, HSD3B1, CYP11A1, CYP17A1, AMH, IGFBP3, INHBA) were highly expressed in the third trimester and largely associated with follicle function. Cluster 3 (COL1A1, COL3A1, FBN1, TGFB2 TGFB3, TGFBR2, TGFBR3, LTBP2, LTBP3, LTBP4, TGFB1I1, ALDH1A1, AR, ESR1, NR2F2) had much low expression in the first trimester rising in the second trimester and remaining at that level during the third trimester. Cluster 3 contained members of two pathways, androgen and TGFβ signalling, including a common member of both pathways namely the androgen receptor cofactor TGFβ1 induced transcript 1 protein (TGFB1I1; hic5). GATA4, FBN3 and LHCGR, were highly correlated with each other and were expressed highly in the first trimester during stromal expansion before follicle formation, suggesting that this could be a critical phase in the development of the ovarian stroma.

]]>
<![CDATA[The Lymphatic Endothelial mCLCA1 Antibody Induces Proliferation and Growth of Lymph Node Lymphatic Sinuses]]> https://www.researchpad.co/article/5989dab7ab0ee8fa60bad206

Lymphocyte- and leukocyte-mediated lymph node (LN) lymphatic sinus growth (lymphangiogenesis) is involved in immune responses and in diseases including cancer and arthritis. We previously discovered a 10.1.1 Ab that recognizes the lymphatic endothelial cell (LEC) surface protein mCLCA1, which is an interacting partner for LFA1 and Mac-1 that mediates lymphocyte adhesion to LECs. Here, we show that 10.1.1 Ab treatment specifically induces LEC proliferation, and influences migration and adhesion in vitro. Functional testing by injection of mice with 10.1.1 Ab but not control hamster Abs identified rapid induction of LN LEC proliferation and extensive lymphangiogenesis within 23 h. BrdU pulse-chase analysis demonstrated incorporation of proliferating LYVE-1-positive LEC into the growing medullary lymphatic sinuses. The 10.1.1 Ab-induced LN remodeling involved coordinate increases in LECs and also blood endothelial cells, fibroblastic reticular cells, and double negative stroma, as is observed during the LN response to inflammation. 10.1.1 Ab-induced lymphangiogenesis was restricted to LNs, as mCLCA1-expressing lymphatic vessels of the jejunum and dermis were unaffected by 23 h 10.1.1 Ab treatment. These findings demonstrate that 10.1.1 Ab rapidly and specifically induces proliferation and growth of LN lymphatic sinuses and stroma, suggesting a key role of mCLCA1 in coordinating LN remodeling during immune responses.

]]>
<![CDATA[Mesenchymal Stromal Cells Promote Axonal Outgrowth Alone and Synergistically with Astrocytes via tPA]]> https://www.researchpad.co/article/5989da16ab0ee8fa60b7b365

We reported that mesenchymal stromal cells (MSCs) enhance neurological recovery from experimental stroke and increase tissue plasminogen activator (tPA) expression in astrocytes. Here, we investigate mechanisms by which tPA mediates MSC enhanced axonal outgrowth. Primary murine neurons and astrocytes were isolated from wild-type (WT) and tPA-knockout (KO) cortices of embryos. Mouse MSCs (WT) were purchased from Cognate Inc. Neurons (WT or KO) were seeded in soma side of Xona microfluidic chambers, and astrocytes (WT or KO) and/or MSCs in axon side. The chambers were cultured as usual (normoxia) or subjected to oxygen deprivation. Primary neurons (seeded in plates) were co-cultured with astrocytes and/or MSCs (in inserts) for Western blot. In chambers, WT axons grew significantly longer than KO axons and exogenous tPA enhanced axonal outgrowth. MSCs increased WT axonal outgrowth alone and synergistically with WT astrocytes at both normoxia and oxygen deprivation conditions. The synergistic effect was inhibited by U0126, an ERK inhibitor, and receptor associated protein (RAP), a low density lipoprotein receptor related protein 1 (LRP1) ligand antagonist. However, MSCs exerted neither individual nor synergistic effects on KO axonal outgrowth. Western blot showed that MSCs promoted astrocytic tPA expression and increased neuronal tPA alone and synergistically with astrocytes. Also, MSCs activated neuronal ERK alone and synergistically with astrocytes, which was inhibited by RAP. We conclude: (1) MSCs promote axonal outgrowth via neuronal tPA and synergistically with astrocytic tPA; (2) neuronal tPA is critical to observe the synergistic effect of MSC and astrocytes on axonal outgrowth; and (3) tPA mediates MSC treatment-induced axonal outgrowth through the LRP1 receptor and ERK.

]]>