ResearchPad - structural https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[IP<sub>3</sub> mediated global Ca<sup>2+</sup> signals arise through two temporally and spatially distinct modes of Ca<sup>2+</sup> release]]> https://www.researchpad.co/article/elastic_article_13332 The ‘building-block’ model of inositol trisphosphate (IP3)-mediated Ca2+ liberation posits that cell-wide cytosolic Ca2+ signals arise through coordinated activation of localized Ca2+ puffs generated by stationary clusters of IP3 receptors (IP3Rs). Here, we revise this hypothesis, applying fluctuation analysis to resolve Ca2+ signals otherwise obscured during large Ca2+ elevations. We find the rising phase of global Ca2+ signals is punctuated by a flurry of puffs, which terminate before the peak by a mechanism involving partial ER Ca2+ depletion. The continuing rise in Ca2+, and persistence of global signals even when puffs are absent, reveal a second mode of spatiotemporally diffuse Ca2+ signaling. Puffs make only small, transient contributions to global Ca2+ signals, which are sustained by diffuse release of Ca2+ through a functionally distinct process. These two modes of IP3-mediated Ca2+ liberation have important implications for downstream signaling, imparting spatial and kinetic specificity to Ca2+-dependent effector functions and Ca2+ transport.

]]>
<![CDATA[A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl<sup>–</sup>/H<sup>+</sup> transport cycle]]> https://www.researchpad.co/article/elastic_article_13331 Cells are shielded from harmful molecules and other threats by a thin, flexible layer called the membrane. However, this barrier also prevents chloride, sodium, protons and other ions from moving in or out of the cell. Channels and transporters are two types of membrane proteins that form passageways for these charged particles.

Channels let ions flow freely from one side of the membrane to the other. To do so, these proteins change their three-dimensional shape to open or close as needed. On the other hand, transporters actively pump ions across the membrane to allow the charged particles to accumulate on one side. The shape changes needed for that type of movement are different: the transporters have to open a passageway on one side of the membrane while closing it on the other side, alternating openings to one side or the other.

In general, channels and transporters are not related to each other, but one exception is a group called CLCs proteins. Present in many organisms, this family contains a mixture of channels and transporters. For example, humans have nine CLC proteins: four are channels that allow chloride ions in and out, and five are ‘exchange transporters’ that make protons and chloride ions cross the membrane in opposite directions. These proteins let one type of charged particle move freely across the membrane, which generates energy that the transporter then uses to actively pump the other ion in the direction needed by the cell. Yet, the exact three-dimensional changes required for CLC transporters and channels to perform their roles are still unknown.

To investigate this question, Chavan, Cheng et al. harnessed a technique called X-ray crystallography, which allows scientists to look at biological molecules at the level of the atom. This was paired with other methods to examine a CLC mutant that adopts the shape of a normal CLC transporter when it is loaded with a proton. The experiments revealed how various elements in the transporter move relative to each other to adopt a structure that allows protons and chloride ions to enter the protein from opposite sides of the membrane, using separate pathways. While obtained on a bacterial CLC, these results can be applied to other CLC channels and transporters (including those in humans), shedding light on how this family transports charged particles across membranes.

From bone diseases to certain types of seizures, many human conditions are associated with poorly functioning CLCs. Understanding the way these structures change their shapes to perform their roles could help to design new therapies for these health problems.

]]>
<![CDATA[Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses]]> https://www.researchpad.co/article/elastic_article_13327 ATP-binding cassette (ABC) transporters are molecular pumps ubiquitous across all kingdoms of life. While their structures have been widely reported, the kinetics governing their transport cycles remain largely unexplored. Multidrug resistance protein 1 (MRP1) is an ABC exporter that extrudes a variety of chemotherapeutic agents and native substrates. Previously, the structures of MRP1 were determined in an inward-facing (IF) or outward-facing (OF) conformation. Here, we used single-molecule fluorescence spectroscopy to track the conformational changes of bovine MRP1 (bMRP1) in real time. We also determined the structure of bMRP1 under active turnover conditions. Our results show that substrate stimulates ATP hydrolysis by accelerating the IF-to-OF transition. The rate-limiting step of the transport cycle is the dissociation of the nucleotide-binding-domain dimer, while ATP hydrolysis per se does not reset MRP1 to the resting state. The combination of structural and kinetic data illustrates how different conformations of MRP1 are temporally linked and how substrate and ATP alter protein dynamics to achieve active transport.

]]>
<![CDATA[A molecular filter for the cnidarian stinging response]]> https://www.researchpad.co/article/elastic_article_12714 All animals detect and integrate diverse environmental signals to mediate behavior. Cnidarians, including jellyfish and sea anemones, both detect and capture prey using stinging cells called nematocytes which fire a venom-covered barb via an unknown triggering mechanism. Here, we show that nematocytes from Nematostella vectensis use a specialized voltage-gated calcium channel (nCaV) to distinguish salient sensory cues and control the explosive discharge response. Adaptations in nCaV confer unusually sensitive, voltage-dependent inactivation to inhibit responses to non-prey signals, such as mechanical water turbulence. Prey-derived chemosensory signals are synaptically transmitted to acutely relieve nCaV inactivation, enabling mechanosensitive-triggered predatory attack. These findings reveal a molecular basis for the cnidarian stinging response and highlight general principles by which single proteins integrate diverse signals to elicit discrete animal behaviors.

]]>
<![CDATA[Nek7 conformational flexibility and inhibitor binding probed through protein engineering of the R-spine]]> https://www.researchpad.co/article/elastic_article_9198 Nek7 is a serine/threonine-protein kinase required for proper spindle formation and cytokinesis. Elevated Nek7 levels have been observed in several cancers, and inhibition of Nek7 might provide a route to the development of cancer therapeutics. To date, no selective and potent Nek7 inhibitors have been identified. Nek7 crystal structures exhibit an improperly formed regulatory-spine (R-spine), characteristic of an inactive kinase. We reasoned that the preference of Nek7 to crystallise in this inactive conformation might hinder attempts to capture Nek7 in complex with Type I inhibitors. Here, we have introduced aromatic residues into the R-spine of Nek7 with the aim to stabilise the active conformation of the kinase through R-spine stacking. The strong R-spine mutant Nek7SRS retained catalytic activity and was crystallised in complex with compound 51, an ATP-competitive inhibitor of Nek2 and Nek7. Subsequently, we obtained the same crystal form for wild-type Nek7WT in apo form and bound to compound 51. The R-spines of the three well-ordered Nek7WT molecules exhibit variable conformations while the R-spines of the Nek7SRS molecules all have the same, partially stacked configuration. Compound 51 bound to Nek2 and Nek7 in similar modes, but differences in the precise orientation of a substituent highlights features that could be exploited in designing inhibitors that are selective for particular Nek family members. Although the SRS mutations are not required to obtain a Nek7–inhibitor structure, we conclude that it is a useful strategy for restraining the conformation of a kinase in order to promote crystallogenesis.

]]>
<![CDATA[Recent advances in understanding prodrug transport through the SLC15 family of proton-coupled transporters]]> https://www.researchpad.co/article/elastic_article_9192 Solute carrier (SLC) transporters play important roles in regulating the movement of small molecules and ions across cellular membranes. In mammals, they play an important role in regulating the uptake of nutrients and vitamins from the diet, and in controlling the distribution of their metabolic intermediates within the cell. Several SLC families also play an important role in drug transport and strategies are being developed to hijack SLC transporters to control and regulate drug transport within the body. Through the addition of amino acid and peptide moieties several novel antiviral and anticancer agents have been developed that hijack the proton-coupled oligopeptide transporters, PepT1 (SCL15A1) and PepT2 (SLC15A2), for improved intestinal absorption and renal retention in the body. A major goal is to understand the rationale behind these successes and expand the library of prodrug molecules that utilise SLC transporters. Recent co-crystal structures of prokaryotic homologues of the human PepT1 and PepT2 transporters have shed important new insights into the mechanism of prodrug recognition. Here, I will review recent developments in our understanding of ligand recognition and binding promiscuity within the SLC15 family, and discuss current models for prodrug recognition.

]]>
<![CDATA[The road to the structure of the mitochondrial respiratory chain supercomplex]]> https://www.researchpad.co/article/elastic_article_9190 The four complexes of the mitochondrial respiratory chain are critical for ATP production in most eukaryotic cells. Structural characterisation of these complexes has been critical for understanding the mechanisms underpinning their function. The three proton-pumping complexes, Complexes I, III and IV associate to form stable supercomplexes or respirasomes, the most abundant form containing 80 subunits in mammals. Multiple functions have been proposed for the supercomplexes, including enhancing the diffusion of electron carriers, providing stability for the complexes and protection against reactive oxygen species. Although high-resolution structures for Complexes III and IV were determined by X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessitated advances in sample preparation and the development of cryo-electron microscopy techniques. We now enjoy structures for these beautiful complexes isolated from multiple organisms and in multiple states and together they provide important insights into respiratory chain function and the role of the supercomplex. While we as non-structural biologists use these structures for interpreting our own functional data, we need to remind ourselves that they stand on the shoulders of a large body of previous structural studies, many of which are still appropriate for use in understanding our results. In this mini-review, we discuss the history of respiratory chain structural biology studies leading to the structures of the mammalian supercomplexes and beyond.

]]>
<![CDATA[Microbeam X-ray diffraction study of lipid structure in stratum corneum of human skin]]> https://www.researchpad.co/article/elastic_article_7631 Human skin, not previously frozen, was studied by small-angle X-ray diffraction. The samples were folded so that a 6μm X-ray beam passed through the top layer of skin, stratum corneum. Diffraction patterns recorded with this method consisted of peaks at about q = 0.5, 1.0 and 1.4 nm-1 in the direction perpendicular to the skin surface more clearly than in previous studies. These peaks are interpreted to arise from lipids between corneocytes. A simple unit of a linear electron density profile with three minima was used to account for the observed intensity profiles. Combinations of calculated diffraction from models with one, two and three units accounted for the major part of the observed diffraction pattern, showing the diversity in the structure of the intercellular lipids.

]]>
<![CDATA[Heterogeneity of proteome dynamics between connective tissue phases of adult tendon]]> https://www.researchpad.co/article/elastic_article_7267 Muscles are anchored to bones through specialized tissues called tendons. Made of bundles of fibers (or fascicles) linked together by an ‘interfascicular’ matrix, healthy tendons are required for organisms to move properly. Yet, these structures are constantly exposed to damage: the interfascicular matrix, in particular, is highly susceptible to injury as it allows the fascicles to slide on each other.

One way to avoid damage could be for the body to continually replace proteins in tendons before they become too impaired. However, the way proteins are renewed in these structures is currently not well understood – indeed, it has long been assumed that almost no protein turnover occurs in tendons. In particular, it is unknown whether proteins in the interfascicular matrix have a higher turn over than those in the fascicles.

To investigate, Choi, Simpson et al. fed rats on water carrying a molecular label that becomes integrated into new proteins. Analysis of individual proteins from the rats’ tendons showed great variation in protein turnover, with some replaced every few days and others only over several years. This suggests that protein turnover is actually an important part of tendon health. In particular, the results show that turnover is higher in the interfascicular matrix, where damage is expected to be more likely.

Protein turnover also plays a part in conditions such as cancer, heart disease and kidney disease. Using approaches like the one developed by Choi, Simpson et al. could help to understand how individual proteins are renewed in a range of diseases, and how to design new treatments.

]]>
<![CDATA[PISA-SPARKY: an interactive SPARKY plugin to analyze oriented solid-state NMR spectra of helical membrane proteins]]> https://www.researchpad.co/article/N981a32bd-a37b-4315-9117-3eabfe7b2b1c Two-dimensional [15N-1H] separated local field solid-state nuclear magnetic resonance (NMR) experiments of membrane proteins aligned in lipid bilayers provide tilt and rotation angles for α-helical segments using Polar Index Slant Angle (PISA)-wheel models. No integrated software has been made available for data analysis and visualization.ResultsWe have developed the PISA-SPARKY plugin to seamlessly integrate PISA-wheel modeling into the NMRFAM-SPARKY platform. The plugin performs basic simulations, exhaustive fitting against experimental spectra, error analysis and dipolar and chemical shift wave plotting. The plugin also supports PyMOL integration and handling of parameters that describe variable alignment and dynamic scaling encountered with magnetically aligned media, ensuring optimal fitting and generation of restraints for structure calculation.Availability and implementation PISA-SPARKY is freely available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers of the SBGrid (https://sbgrid.org). The pisa.py script is available and documented on GitHub (https://github.com/weberdak/pisa.py) along with a tutorial video and sample data.Supplementary information Supplementary data are available at Bioinformatics online. ]]> <![CDATA[atomium—a Python structure parser]]> https://www.researchpad.co/article/N48cdda5b-592b-40b2-a389-9dd18c3d3ef7 Structural biology relies on specific file formats to convey information about macromolecular structures. Traditionally this has been the PDB format, but increasingly newer formats, such as PDBML, mmCIF and MMTF are being used. Here we present atomium, a modern, lightweight, Python library for parsing, manipulating and saving PDB, mmCIF and MMTF file formats. In addition, we provide a web service, pdb2json, which uses atomium to give a consistent JSON representation to the entire Protein Data Bank.Availability and implementationatomium is implemented in Python and its performance is equivalent to the existing library BioPython. However, it has significant advantages in features and API design. atomium is available from atomium.bioinf.org.uk and pdb2json can be accessed at pdb2json.bioinf.org.ukSupplementary information Supplementary data are available at Bioinformatics online. ]]> <![CDATA[Single-molecule observation of ATP-independent SSB displacement by RecO in <i>Deinococcus radiodurans</i>]]> https://www.researchpad.co/article/N75dd0523-a172-49b7-a20f-e040e1226ee1 Deinococcus radiodurans (DR) survives in the presence of hundreds of double-stranded DNA (dsDNA) breaks by efficiently repairing such breaks. RecO, a protein that is essential for the extreme radioresistance of DR, is one of the major recombination mediator proteins in the RecA-loading process in the RecFOR pathway. However, how RecO participates in the RecA-loading process is still unclear. In this work, we investigated the function of drRecO using single-molecule techniques. We found that drRecO competes with the ssDNA-binding protein (drSSB) for binding to the freely exposed ssDNA, and efficiently displaces drSSB from ssDNA without consuming ATP. drRecO replaces drSSB and dissociates it completely from ssDNA even though drSSB binds to ssDNA approximately 300 times more strongly than drRecO does. We suggest that drRecO facilitates the loading of RecA onto drSSB-coated ssDNA by utilizing a small drSSB-free space on ssDNA that is generated by the fast diffusion of drSSB on ssDNA.

]]>
<![CDATA[Limited dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction]]> https://www.researchpad.co/article/N89b0a066-5932-4aa3-9c28-7c04aeecc210 Stem cells can give rise to many types of specialized cells through a process called differentiation, which is partly regulated by changes in the levels of a protein known as β-catenin. On one hand, a ‘destruction complex’ can keep β-catenin levels low; this complex includes a protein called Axin and an enzyme known as GSK-3, which can tag β-catenin for degradation. On the other hand, when β-catenin levels need to increase, another protein called Dishevelled is activated. By binding to Axin, Dishevelled can bring the destruction complex in contact with other proteins, which leads to the deactivation of GSK-3.

Dishevelled and Axin interact via a region that is similar in the two proteins, called DIX in Dishevelled and DAX in Axin. Studies of DIX and DAX have shown that both regions can form polymers – that is, a high number of similar units can bind together to form larger structures. However, these experiments were at higher concentrations than would be found in the cell. It was thought that, when combined, DIX and DAX might form these long chains together, preventing Axin from carrying out its role in destroying β-catenin. Kan et al. set out to better understand this process by studying how DIX and DAX behave separately, and how they interact.

The proteins were examined using a technique called cryo-electron microscopy, which allows scientists to dissect the structure of large proteins. When there was a high concentration of DIX in the sample, the molecules attached to one another to form long double-stranded helices. Similarly, DAX also formed helices, but these were shorter and only single-stranded. When the two proteins were combined, DAX bound only to the ends of short DIX chains, so that there are not more than four DAX chains attached to each DIX double helix.

To see if this behaviour happens naturally, Kan et al. attached fluorescent tags to Dishevelled proteins and followed them in living cells: this showed that Dishevelled forms smaller chains with fewer than ten molecules. Together these results highlight how Dishevelled binds to Axin to deactivate GSK-3, to prevent the enzyme from promoting β-catenin destruction.

Mutations in the genes that encode β-catenin or its regulators are associated with cancer. Ultimately, a better understanding of how β-catenin is regulated could help to identify new opportunities for drug development.

]]>
<![CDATA[Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs]]> https://www.researchpad.co/article/N58103102-565b-4494-8b69-a2dcfc1a57fa Cation-chloride-cotransporters (CCCs) catalyze transport of Cl- with K+ and/or Na+across cellular membranes. CCCs play roles in cellular volume regulation, neural development and function, audition, regulation of blood pressure, and renal function. CCCs are targets of clinically important drugs including loop diuretics and their disruption has been implicated in pathophysiology including epilepsy, hearing loss, and the genetic disorders Andermann, Gitelman, and Bartter syndromes. Here we present the structure of a CCC, the Mus musculus K+-Cl- cotransporter (KCC) KCC4, in lipid nanodiscs determined by cryo-EM. The structure, captured in an inside-open conformation, reveals the architecture of KCCs including an extracellular domain poised to regulate transport activity through an outer gate. We identify binding sites for substrate K+ and Cl- ions, demonstrate the importance of key coordinating residues for transporter activity, and provide a structural explanation for varied substrate specificity and ion transport ratio among CCCs. These results provide mechanistic insight into the function and regulation of a physiologically important transporter family.

]]>
<![CDATA[Anticoagulation after Transcatheter Aortic Valve Implantation: Current Status]]> https://www.researchpad.co/article/N86afab52-e9a8-4ee5-92dc-28be81aba9e8 Transcatheter aortic valve implantation (TAVI) is the standard of care for symptomatic severe aortic stenosis. Antithrombotic therapy is required after TAVI to prevent thrombotic complications but it increases the risk of bleeding events. Current clinical guidelines are mostly driven by expert opinion and therefore yield low-grade recommendations. The optimal antithrombotic regimen following TAVI has yet to be determined and several randomised controlled trials assessing this issue are ongoing. The purpose of this article is to critically explore the impact of antithrombotic drugs, especially anticoagulants, on long-term clinical outcomes following successful TAVI.

]]>
<![CDATA[A single power stroke by ATP binding drives substrate translocation in a heterodimeric ABC transporter]]> https://www.researchpad.co/article/N31301349-16ac-43e0-9228-476ce24b03ef ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters, responsible for many physiological processes and human maladies. However, the mechanism how chemical energy of ATP facilitates translocation of chemically diverse compounds across membranes is poorly understood. Here, we advance the quantitative mechanistic understanding of the heterodimeric ABC transporter TmrAB, a functional homolog of the transporter associated with antigen processing (TAP) by single-turnover analyses at single-liposome resolution. We reveal that a single conformational switch by ATP binding drives unidirectional substrate translocation. After this power stroke, ATP hydrolysis and phosphate release launch the return to the resting state, which facilitates nucleotide exchange and a new round of substrate binding and translocation. In contrast to hitherto existing steady-state assays, our single-turnover approach uncovers the power stroke in substrate translocation and the tight chemomechanical coupling in these molecular machines.

]]>
<![CDATA[Top-down machine learning approach for high-throughput single-molecule analysis]]> https://www.researchpad.co/article/N957aad02-2c00-4587-a7f5-2b73aea07b8d During a chemical or biological process, a molecule may transition through a series of states, many of which are rare or short-lived. Advances in technology have made it easier to detect these states by gathering large amounts of data on individual molecules. However, the increasing size of these datasets has put a strain on the algorithms and software used to identify different molecular states.

Now, White et al. have developed a new algorithm called DISC which overcomes this technical limitation. Unlike most other algorithms, DISC requires minimal input from the user and uses a new method to group the data into categories that represent distinct molecular states. Although this new approach produces a similar end-result, it reaches this conclusion much faster than more commonly used algorithms.

To test the effectiveness of the algorithm, White et al. studied how individual molecules of a chemical known as cAMP bind to parts of proteins called cyclic nucleotide binding domains (or CNDBs for short). A fluorescent tag was attached to single molecules of cAMP and data were collected on the behavior of each molecule. Previous evidence suggested that when four CNDBs join together to form a so-called tetramer complex, this affects the binding of cAMP. Using the DISC system, White et al. showed that individual cAMP molecules interact with all four domains in a similar way, suggesting that the binding of cAMP is not impacted by the formation of a tetramer complex.

Analyzing this data took DISC less than 20 minutes compared to existing algorithms which took anywhere between four hours and two weeks to complete. The enhanced speed of the DISC algorithm could make it easier to analyze much larger datasets from other techniques in addition to fluorescence. This means that a greater number of states can be sampled, providing a deeper insight into the inner workings of biological and chemical processes.

]]>
<![CDATA[Comprehensive analysis of PPARγ agonist activities of stereo-, regio-, and enantio-isomers of hydroxyoctadecadienoic acids]]> https://www.researchpad.co/article/Ncba0b326-176f-4db2-bf87-2a3eba460f56 Hydroxyoctadecadienoic acids (HODEs) are produced by oxidation and reduction of linoleates. There are several regio- and stereo-isomers of HODE, and their concentrations in vivo are higher than those of other lipids. Although conformational isomers may have different biological activities, comparative analysis of intracellular function of HODE isomers has not yet been performed. We evaluated the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ), a therapeutic target for diabetes, and analyzed PPARγ agonist activity of HODE isomers. The lowest scores for docking poses of 12 types of HODE isomers (9-, 10-, 12-, and 13-HODEs) were almost similar in docking simulation of HODEs into PPARγ ligand-binding domain (LBD). Direct binding of HODE isomers to PPARγ LBD was determined by water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiments. In contrast, there were differences in PPARγ agonist activities among 9- and 13-HODE stereo-isomers and 12- and 13-HODE enantio-isomers in a dual-luciferase reporter assay. Interestingly, the activity of 9-HODEs was less than that of other regio-isomers, and 9-(E,E)-HODE tended to decrease PPARγ-target gene expression during the maturation of 3T3-L1 cells. In addition, 10- and 12-(Z,E)-HODEs, which we previously proposed as biomarkers for early-stage diabetes, exerted PPARγ agonist activity. These results indicate that all HODE isomers have PPARγ-binding affinity; however, they have different PPARγ agonist activity. Our findings may help to understand the biological function of lipid peroxidation products.

]]>
<![CDATA[A heuristic approach for detecting RNA H-type pseudoknots]]> https://www.researchpad.co/article/Nc1ada0ad-baf0-4264-aea3-28ea49d392a9 Motivation: RNA H-type pseudoknots are ubiquitous pseudoknots that are found in almost all classes of RNA and thought to play very important roles in a variety of biological processes. Detection of these RNA H-type pseudoknots can improve our understanding of RNA structures and their associated functions. However, the currently existing programs for detecting such RNA H-type pseudoknots are still time consuming and sometimes even ineffective. Therefore, efficient and effective tools for detecting the RNA H-type pseudoknots are needed.

Results: In this paper, we have adopted a heuristic approach to develop a novel tool, called HPknotter, for efficiently and accurately detecting H-type pseudoknots in an RNA sequence. In addition, we have demonstrated the applicability and effectiveness of HPknotter by testing on some sequences with known H-type pseudoknots. Our approach can be easily extended and applied to other classes of more general pseudoknots.

Availability: The web server of our HPknotter is available for online analysis at http://bioalgorithm.life.nctu.edu.tw/HPKNOTTER/

Contact: cllu@mail.nctu.edu.tw, chiu@cc.nctu.edu.tw

]]>
<![CDATA[A Snu114–GTP–Prp8 module forms a relay station for efficient splicing in yeast]]> https://www.researchpad.co/article/N183db1dc-c666-4ced-a2e2-75b885a8b11e The single G protein of the spliceosome, Snu114, has been proposed to facilitate splicing as a molecular motor or as a regulatory G protein. However, available structures of spliceosomal complexes show Snu114 in the same GTP-bound state, and presently no Snu114 GTPase-regulatory protein is known. We determined a crystal structure of Snu114 with a Snu114-binding region of the Prp8 protein, in which Snu114 again adopts the same GTP-bound conformation seen in spliceosomes. Snu114 and the Snu114–Prp8 complex co-purified with endogenous GTP. Snu114 exhibited weak, intrinsic GTPase activity that was abolished by the Prp8 Snu114-binding region. Exchange of GTP-contacting residues in Snu114, or of Prp8 residues lining the Snu114 GTP-binding pocket, led to temperature-sensitive yeast growth and affected the same set of splicing events in vivo. Consistent with dynamic Snu114-mediated protein interactions during splicing, our results suggest that the Snu114–GTP–Prp8 module serves as a relay station during spliceosome activation and disassembly, but that GTPase activity may be dispensable for splicing.

]]>