ResearchPad - sulfur-containing-amino-acids https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Atco, a yeast mitochondrial complex of Atp9 and Cox6, is an assembly intermediate of the ATP synthase]]> https://www.researchpad.co/article/elastic_article_14724 Mitochondrial oxidative phosphorylation (oxphos) is the process by which the ATP synthase conserves the energy released during the oxidation of different nutrients as ATP. The yeast ATP synthase consists of three assembly modules, one of which is a ring consisting of 10 copies of the Atp9 subunit. We previously reported the existence in yeast mitochondria of high molecular weight complexes composed of mitochondrially encoded Atp9 and of Cox6, an imported structural subunit of cytochrome oxidase (COX). Pulse-chase experiments indicated a correlation between the loss of newly translated Atp9 complexed to Cox6 and an increase of newly formed Atp9 ring, but did not exclude the possibility of an alternate source of Atp9 for ring formation. Here we have extended studies on the functions and structure of this complex, referred to as Atco. We show that Atco is the exclusive source of Atp9 for the ATP synthase assembly. Pulse-chase experiments show that newly translated Atp9, present in Atco, is converted to a ring, which is incorporated into the ATP synthase with kinetics characteristic of a precursor-product relationship. Even though Atco does not contain the ring form of Atp9, cross-linking experiments indicate that it is oligomeric and that the inter-subunit interactions are similar to those of the bona fide ring. We propose that, by providing Atp9 for biogenesis of ATP synthase, Atco complexes free Cox6 for assembly of COX. This suggests that Atco complexes may play a role in coordinating assembly and maintaining proper stoichiometry of the two oxphos enzymes

]]>
<![CDATA[The impact of rumen-protected amino acids on the expression of key- genes involved in the innate immunity of dairy sheep]]> https://www.researchpad.co/article/elastic_article_14615 Rumen protected amino acids inclusion in ewes’ diets has been proposed to enhance their innate immunity. The objective of this work was to determine the impact of dietary supplementation with rumen-protected methionine or lysine, as well as with a combination of these amino acids in two different ratios, on the expression of selected key-genes (NLRs, MyD88, TRIF, MAPK-1, IRF-3, JunD, TRAF-3, IRF-5, IL-1α, IL-10, IKK-α, STAT-3 and HO-1). Thus, sixty Chios dairy ewes (Ovis aries) were assigned to one of the following five dietary treatments (12 animals/ treatment): A: basal diet consist of concentrates, wheat straw and alfalfa hay (control group); B: basal diet +6.0 g/head rumen-protected methionine; C: basal diet + 5.0 g/head rumen-protected lysine; D: basal diet +6.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine and E: basal diet +12.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine. The results revealed a significant downregulation of relative transcript level of the IL-1α gene in the neutrophils of C and in monocytes of D ewes compared with the control. Significantly lower mRNA transcript accumulation was also observed for the MyD88 gene in the neutrophils of ewes fed with lysine only (C). The mRNA relative expression levels of JunD gene were highly induced in the monocytes, while those of IL-10 and HO-1 genes were declined in the neutrophils of ewes fed with the C and D diets compared with the control. Lower transcript levels of STAT-3 gene were observed in the neutrophils of ewes fed with either C or with E diets in comparison with the control. In conclusion, our results suggest that the dietary supplementation of ewes with rumen-protected amino acids, down regulate the expression of some genes involved in the pro-inflammatory signalling.

]]>
<![CDATA[Collagen methionine sulfoxide and glucuronidine/LW-1 are markers of coronary artery disease in long-term survivors with type 1 diabetes. The Dialong study]]> https://www.researchpad.co/article/elastic_article_13877 Type 1 diabetes is a risk factor for coronary heart disease. The underlying mechanism behind the accelerated atherosclerosis formation is not fully understood but may be related to the formation of oxidation products and advanced glycation end-products (AGEs). We aimed to examine the associations between the collagen oxidation product methionine sulfoxide; the collagen AGEs methylglyoxal hydroimidazolone (MG-H1), glucosepane, pentosidine, glucuronidine/LW-1; and serum receptors for AGE (RAGE) with measures of coronary artery disease in patients with long-term type 1 diabetes.MethodsIn this cross-sectional study, 99 participants with type 1 diabetes of ≥ 45-year duration and 63 controls without diabetes had either established coronary heart disease (CHD) or underwent Computed Tomography Coronary Angiography (CTCA) measuring total, calcified and soft/mixed plaque volume. Skin collagen methionine sulfoxide and AGEs were measured by liquid chromatography-mass spectrometry and serum sRAGE/esRAGE by ELISA.ResultsIn the diabetes group, low levels of methionine sulfoxide (adjusted for age, sex and mean HbA1c) were associated with normal coronary arteries, OR 0.48 (95% CI 0.27–0.88). Glucuronidine/LW-1 was associated with established CHD, OR 2.0 (1.16–3.49). MG-H1 and glucuronidine/LW-1 correlated with calcified plaque volume (r = 0.23–0.28, p<0.05), while pentosidine correlated with soft/mixed plaque volume (r = 0.29, p = 0.008), also in the adjusted analysis.ConclusionsLow levels of collagen-bound methionine sulfoxide were associated with normal coronary arteries while glucuronidine/LW-1 was positively associated with established CHD in long-term type 1 diabetes, suggesting a role for metabolic and oxidative stress in the formation of atherosclerosis in diabetes. ]]> <![CDATA[Crystal structures of Triosephosphate Isomerases from Taenia solium and Schistosoma mansoni provide insights for vaccine rationale and drug design against helminth parasites]]> https://www.researchpad.co/article/N340e3046-cb91-4c84-8d1b-fb2a65cf4cdb

Triosephosphate isomerases (TPIs) from Taenia solium (TsTPI) and Schistosoma mansoni (SmTPI) are potential vaccine and drug targets against cysticercosis and schistosomiasis, respectively. This is due to the dependence of parasitic helminths on glycolysis and because those proteins elicit an immune response, presumably due to their surface localization. Here we report the crystal structures of TsTPI and SmTPI in complex with 2-phosphoglyceric acid (2-PGA). Both TPIs fold into a dimeric (β-α)8 barrel in which the dimer interface consists of α-helices 2, 3, and 4, and swapping of loop 3. TPIs from parasitic helminths harbor a region of three amino acids knows as the SXD/E insert (S155 to E157 and S157 to D159 in TsTPI and SmTPI, respectively). This insert is located between α5 and β6 and is proposed to be the main TPI epitope. This region is part of a solvent-exposed 310–helix that folds into a hook-like structure. The crystal structures of TsTPI and SmTPI predicted conformational epitopes that could be used for vaccine design. Surprisingly, the epitopes corresponding to the SXD/E inserts are not the ones with the greatest immunological potential. SmTPI, but not TsTPI, habors a sole solvent exposed cysteine (SmTPI-S230) and alterations in this residue decrease catalysis. The latter suggests that thiol-conjugating agents could be used to target SmTPI. In sum, the crystal structures of SmTPI and TsTPI are a blueprint for targeted schistosomiasis and cysticercosis drug and vaccine development.

]]>
<![CDATA[Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study]]> https://www.researchpad.co/article/Nf62c48b8-7c01-44cc-9110-a611b974b3f9

Background

There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways.

Methods and findings

We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators.

Conclusions

In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.

]]>
<![CDATA[Toscana virus non-structural protein NSs acts as E3 ubiquitin ligase promoting RIG-I degradation]]> https://www.researchpad.co/article/Na0a913dc-a63b-43c4-adc6-448aab832714

It is known that the non-structural protein (NSs) of Toscana virus (TOSV), an emergent sandfly-borne virus causing meningitis or more severe central nervous system injuries in humans, exerts its function triggering RIG-I for degradation in a proteasome-dependent manner, thus breaking off the IFN-β production. The non-structural protein of different members of Bunyavirales has recently appeared as a fundamental protagonist in immunity evasion through ubiquitination-mediated protein degradation targets. We showed that TOSV NSs has an E3 ubiquitin ligase activity, mapping at the carboxy-terminal domain and also involving the amino-terminal of the protein. Indeed, neither the amino- (NSsΔN) nor the carboxy- (NSsΔC) terminal-deleted mutants of TOSV NSs were able to cause ubiquitin-mediated proteasome degradation of RIG-I. Moreover, the addition of the C-terminus of TOSV NSs to the homologous protein of the Sandfly Fever Naples Virus, belonging to the same genus and unable to inhibit IFN-β activity, conferred new properties to this protein, favoring RIG-I ubiquitination and its degradation. NSs lost its antagonistic activity to IFN when one of the terminal residues was missing. Therefore, we showed that NSs could behave as an atypical RING between RING (RBR) E3 ubiquitin ligases. This is the first report which identified the E3 ubiquitin ligase activity in a viral protein among negative strand RNA viruses.

]]>
<![CDATA[Drosophila ZDHHC8 palmitoylates scribble and Ras64B and controls growth and viability]]> https://www.researchpad.co/article/5c6730b5d5eed0c484f37f58

Palmitoylation is an important posttranslational modification regulating diverse cellular functions. Consequently, aberrant palmitoylation can lead to diseases such as neuronal disorders or cancer. In humans there are roughly one hundred times more palmitoylated proteins than enzymes catalyzing palmitoylation (palmitoyltransferases). Therefore, it is an important challenge to establish the links between palmitoyltransferases and their targets. From publicly available data, we find that expression of human ZDHHC8 correlates significantly with cancer survival. To elucidate the organismal function of ZDHHC8, we study the Drosophila ortholog of hZDHHC8, CG34449/dZDHHC8. Knockdown of dZDHHC8 causes tissue overgrowth while dZDHHC8 mutants are larval lethal. We provide a list of 159 palmitoylated proteins in Drosophila and present data suggesting that scribble and Ras64B are targets of dZDHHC8.

]]>
<![CDATA[Controlling the dynamics of the Nek2 leucine zipper by engineering of “kinetic” disulphide bonds]]> https://www.researchpad.co/article/5c5df370d5eed0c4845812dc

Nek2 is a dimeric serine/ threonine protein kinase that belongs to the family of NIMA-related kinases (Neks). Its N-terminal catalytic domain and its C-terminal regulatory region are bridged by a leucine zipper, which plays an important role in the activation of Nek2’s catalytic activity. Unusual conformational dynamics on the intermediary/slow timescale has thwarted all attempts so far to determine the structure of the Nek2 leucine zipper by means of X-ray crystallography and Nuclear Magnetic Resonance (NMR). Disulfide engineering, the strategic placement of non-native disulfide bonds into flexible regions flanking the coiled coil, was used to modulate the conformational exchange dynamics of this important dimerization domain. The resulting reduction in exchange rate leads to substantial improvements of important features in NMR spectra, such as line width, coherence transfer leakage and relaxation. These effects were comprehensively analyzed for the wild type protein, two single disulfide bond-bearing mutants and another double disulfide bonds-carrying mutant. Furthermore, exchange kinetics were measured across a wide temperature range, allowing for a detailed analysis of activation energy (ΔG) and maximal rate constant (k’ex). For one mutant carrying a disulfide bond at its C-terminus, a full backbone NMR assignment could be obtained for both conformers, demonstrating the benefits of the disulfide engineering. Our study demonstrates the first successful application of ‘kinetic’ disulfide bonds for the purpose of controlling the adverse effects of protein dynamics. Firstly, this provides a promising, robust platform for the full structural and functional investigation of the Nek2 leucine zipper in the future. Secondly, this work broadens the toolbox of protein engineering by disulfide bonds through the addition of a kinetic option in addition to the well-established thermodynamic uses of disulfide bonds.

]]>
<![CDATA[Isolation and characterization of a tandem-repeated cysteine protease from the symbiotic dinoflagellate Symbiodinium sp. KB8]]> https://www.researchpad.co/article/5c5ca294d5eed0c48441e6cc

A cysteine protease belonging to peptidase C1A superfamily from the eukaryotic, symbiotic dinoflagellate, Symbiodinium sp. strain KB8, was characterized. The protease was purified to near homogeneity (566-fold) by (NH4)2SO4 fractionation, ultrafiltration, and column chromatography using a fluorescent peptide, butyloxycarbonyl-Val-Leu-Lys-4-methylcoumaryl-7-amide (Boc-VLK-MCA), as a substrate for assay purposes. The enzyme was termed VLKP (VLK protease), and its activity was strongly inhibited by cysteine protease inhibitors and activated by reducing agents. Based on the results for the amino acid sequence determined by liquid chromatography–coupled tandem mass spectrometry, a cDNA encoding VLKP was synthesized. VLKP was classified into the peptidase C1A superfamily of cysteine proteases (C1AP). The predicted amino acid sequence of VLKP indicated a tandem array of highly conserved precursors of C1AP with a molecular mass of approximately 71 kDa. The results of gel-filtration chromatography and SDS-PAGE suggested that VLKP exists as a monomer of 31–32 kDa, indicating that the tandem array is likely divided into two mass-equivalent halves that undergo equivalent posttranslational modifications. The VLKP precursor contains an inhibitor prodomain that might become activated after acidic autoprocessing at approximately pH 4. Both purified and recombinant VLKPs had a similar substrate specificity and kinetic parameters for common C1AP substrates. Most C1APs reside in acidic organelles such as the vacuole and lysosomes, and indeed VLKP was most active at pH 4.5. Since VLKP exhibited maximum activity during the late logarithmic growth phase, these attributes suggest that, VLKP is involved in the metabolism of proteins in acidic organelles.

]]>
<![CDATA[Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation]]> https://www.researchpad.co/article/5c6448b0d5eed0c484c2eb9d

Proteins that misfold in the endoplasmic reticulum (ER) are transported back to the cytosol for ER-associated degradation (ERAD). The Sec61 channel is one of the candidates for the retrograde transport conduit. Channel opening from the ER lumen must be triggered by ERAD factors and substrates. Here we aimed to identify new lumenal interaction partners of the Sec61 channel by chemical crosslinking and mass spectrometry. In addition to known Sec61 interactors we detected ERAD factors including Cue1, Ubc6, Ubc7, Asi3, and Mpd1. We show that the CPY* ERAD factor Mpd1 binds to the lumenal Sec61 hinge region. Deletion of the Mpd1 binding site reduced the interaction between both proteins and caused an ERAD defect specific for CPY* without affecting protein import into the ER or ERAD of other substrates. Our data suggest that Mpd1 binding to Sec61 is a prerequisite for CPY* ERAD and confirm a role of Sec61 in ERAD of misfolded secretory proteins.

]]>
<![CDATA[Palmitoylation mediates membrane association of hepatitis E virus ORF3 protein and is required for infectious particle secretion]]> https://www.researchpad.co/article/5c181386d5eed0c484775274

Hepatitis E virus (HEV) is a positive-strand RNA virus encoding 3 open reading frames (ORF). HEV ORF3 protein is a small, hitherto poorly characterized protein involved in viral particle secretion and possibly other functions. Here, we show that HEV ORF3 protein forms membrane-associated oligomers. Immunoblot analyses of ORF3 protein expressed in cell-free vs. cellular systems suggested a posttranslational modification. Further analyses revealed that HEV ORF3 protein is palmitoylated at cysteine residues in its N-terminal region, as corroborated by 3H-palmitate labeling, the investigation of cysteine-to-alanine substitution mutants and treatment with the palmitoylation inhibitor 2-bromopalmitate (2-BP). Abrogation of palmitoylation by site-directed mutagenesis or 2-BP treatment altered the subcellular localization of ORF3 protein, reduced the stability of the protein and strongly impaired the secretion of infectious particles. Moreover, selective membrane permeabilization coupled with immunofluorescence microscopy revealed that HEV ORF3 protein is entirely exposed to the cytosolic side of the membrane, allowing to propose a model for its membrane topology and interactions required in the viral life cycle. In conclusion, palmitoylation determines the subcellular localization, membrane topology and function of HEV ORF3 protein in the HEV life cycle.

]]>
<![CDATA[RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization]]> https://www.researchpad.co/article/5b04166d463d7e0b28e418a9

To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a “helical unravelling” of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus.

]]>
<![CDATA[Spatial and Temporal Resolution of Global Protein Synthesis during HSV Infection Using Bioorthogonal Precursors and Click Chemistry]]> https://www.researchpad.co/article/5989daadab0ee8fa60baa15b

We used pulse-labeling with the methionine analogue homopropargylglycine (HPG) to investigate spatiotemporal aspects of protein synthesis during herpes simplex virus (HSV) infection. In vivo incorporation of HPG enables subsequent selective coupling of fluorochrome-capture reagents to newly synthesised proteins. We demonstrate that HPG labeling had no effect on cell viability, on accumulation of test early or late viral proteins, or on overall virus yields. HPG pulse-labeling followed by SDS-PAGE analysis confirmed incorporation into newly synthesised proteins, while parallel processing by in situ cycloaddition revealed new insight into spatiotemporal aspects of protein localisation during infection. A striking feature was the rapid accumulation of newly synthesised proteins not only in a general nuclear pattern but additionally in newly forming sub-compartments represented by small discrete foci. These newly synthesised protein domains (NPDs) were similar in size and morphology to PML domains but were more numerous, and whereas PML domains were progressively disrupted, NPDs were progressively induced and persisted. Immediate-early proteins ICP4 and ICP0 were excluded from NPDs, but using an ICP0 mutant defective in PML disruption, we show a clear spatial relationship between NPDs and PML domains with NPDs frequently forming immediately adjacent and co-joining persisting PML domains. Further analysis of location of the chaperone Hsc70 demonstrated that while NPDs formed early in infection without overt Hsc70 recruitment, later in infection Hsc70 showed pronounced recruitment frequently in a coat-like fashion around NPDs. Moreover, while ICP4 and ICP0 were excluded from NPDs, ICP22 showed selective recruitment. Our data indicate that NPDs represent early recruitment of host and viral de novo translated protein to distinct structural entities which are precursors to the previously described VICE domains involved in protein quality control in the nucleus, and reveal new features from which we propose spatially linked platforms of newly synthesised protein processing after nuclear import.

]]>
<![CDATA[MSTN, mTOR and FoxO4 Are Involved in the Enhancement of Breast Muscle Growth by Methionine in Broilers with Lower Hatching Weight]]> https://www.researchpad.co/article/5989da06ab0ee8fa60b75e94

Broilers with lower hatching weight (HW) present poorer performance than those with high HW, but there is limited research on the growth regulation of broilers with lower HW. The objective of this study was to investigate the effect of dietary methionine (Met) levels on the growth performance and breast muscle yield of broilers with different HW and underlying mechanisms. A total of 192 one-day-old Arbor Acres broiler chicks with different HW (heavy: 48.3±0.1 g, and light: 41.7±0.1 g) were allocated to a 2×2 factorial arrangement with 6 replicates of 8 chicks per replicate cage. Control starter (1–21 d) and finisher (22–42 d) diets were formulated to contain 0.50% and 0.43% Met, respectively. Corresponding values for a high Met treatment were 0.60% and 0.53%. Light chicks had lower body weight gain (BWG) and breast muscle yield than heavy chicks when the broilers were fed the control diets. High Met diets improved BWG, gain to feed ratio and breast muscle yield in light but not heavy chicks. Decreased DNA content and increased RNA/DNA and protein/DNA ratios in breast muscle were induced by high Met diets only in light chicks. MSTN mRNA level was decreased by high Met diets only in light chicks, and this decrease was accompanied by a significant increase in MSTN gene exon 1 methylation. In addition, high Met diets increased mTOR phosphorylation, but decreased FoxO4 phosphorylation in breast muscle of light chicks. In conclusion, the BWG and breast muscle yield of light chicks were improved by increasing dietary Met levels probably through alterations of MSTN transcription and phosphorylation of mTOR and FoxO4.

]]>
<![CDATA[The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity]]> https://www.researchpad.co/article/5989da17ab0ee8fa60b7bacf

Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion.

]]>
<![CDATA[An Interplay of S-Nitrosylation and Metal Ion Binding for Astrocytic S100B Protein]]> https://www.researchpad.co/article/5989da1dab0ee8fa60b7d9f6

Mammalian S100B protein plays multiple important roles in cellular brain processes. The protein is a clinically used marker for several pathologies including brain injury, neurodegeneration and cancer. High levels of S100B released by astrocytes in Down syndrome patients are responsible for reduced neurogenesis of neural progenitor cells and induction of cell death in neurons. Despite increasing understanding of S100B biology, there are still many questions concerning the detailed molecular mechanisms that determine specific activities of S100B. Elevated overexpression of S100B protein is often synchronized with increased nitric oxide-related activity. In this work we show S100B is a target of exogenous S-nitrosylation in rat brain protein lysate and identify endogenous S-nitrosylation of S100B in a cellular model of astrocytes. Biochemical studies are presented indicating S-nitrosylation tunes the conformation of S100B and modulates its Ca2+ and Zn2+ binding properties. Our in vitro results suggest that the possibility of endogenous S-nitrosylation should be taken into account in the further studies of in vivo S100B protein activity, especially under conditions of increased NO-related activity.

]]>
<![CDATA[Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli]]> https://www.researchpad.co/article/5989daadab0ee8fa60baa344

Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.

]]>
<![CDATA[Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia]]> https://www.researchpad.co/article/5989db34ab0ee8fa60bd298f

Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the antioxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders.

]]>
<![CDATA[Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation]]> https://www.researchpad.co/article/5989daa5ab0ee8fa60ba720c

The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall.

]]>
<![CDATA[T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation]]> https://www.researchpad.co/article/5989db19ab0ee8fa60bcdd84

Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

]]>