ResearchPad - surface-tension https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Instigation of indigenous thermophilic bacterial consortia for enhanced oil recovery from high temperature oil reservoirs]]> https://www.researchpad.co/article/elastic_article_13812 The purpose of the study involves the development of an anaerobic, thermophilic microbial consortium TERIK from the high temperature reservoir of Gujarat for enhance oil recovery. To isolate indigenous microbial consortia, anaerobic baltch media were prepared and inoculated with the formation water; incubated at 65°C for 10 days. Further, the microbial metabolites were analyzed by gas chromatography, FTIR and surface tension. The efficiency of isolated consortia towards enhancing oil recovery was analyzed through core flood assay. The novelty of studied consortia was that, it produces biomass (600 mg/l), bio-surfactant (325 mg/l), and volatile fatty acids (250 mg/l) at 65°C in the span of 10 days, that are adequate to alter the surface tension (70 to 34 mNm -1) and sweep efficiency of zones facilitating the displacement of oil. TERIK was identified as Clostridium sp. The FTIR spectra of biosurfactant indicate the presence of N-H stretch, amides and polysaccharide. A core flooding assay was designed to explore the potential of TERIK towards enhancing oil recovery. The results showed an effective reduction in permeability at residual oil saturation from 2.14 ± 0.1 to 1.39 ± 0.05 mD and 19% incremental oil recovery.

]]>
<![CDATA[Aggregation and interfacial phenomenon of amphiphilic drug under the influence of pharmaceutical excipients (green/biocompatible gemini surfactant)]]> https://www.researchpad.co/article/5c648cbcd5eed0c484c81680

In the current study, we have examined the interaction amongst an antidepressant drug amitriptyline hydrochloride (AMH) and ethane-1, 2-diyl bis(N,N-dimethyl-N-cetylammoniumacetoxy) dichloride (16-E2-16, a green gemini surfactant) through tensiometric and fluorimetric techniques in aqueous/electrolyte/urea solutions. Significant variations are observed in the various evaluated parameters in the present study. Gemini 16-E2-16 has outstanding surface properties along with a much lower cmc value, demonstrating very little toxicity as well as considerable antimicrobial activity. The cmc values of mixtures decrease through increase in mole fraction (α1) of 16-E2-16, which specifies the nonideality of the solution mixtures, along with demonstrating the occurrence of mixed micellization too. Negative βRub values signify on the whole attractive force of interaction between constituents of mixed micelles. Owing to the incidence of electrolyte NaCl (50 mmol.kg–1), lowering of the micelles’ surface charge happens, resulting in aggregation taking place at lower concentration while the presence of urea (NH2CONH2) halts micellization taking place, which means the cmc value increases in the attendance of urea. The ΔGmo values for all systems were negative along with the presence of electrolyte/urea. The excess free energy (Gex) of studied mixed systems was also estimated and found to be negative for all the systems. Using the fluorescence quenching method, the micelle aggregation number (Nagg) was evaluated and it was found that the contribution of gemini surfactant was always more than that of the AMH and their value enhances in the existence of electrolyte while decreasing in the attendance of NH2CONH2 in the system. In addition, other fluorescence parameters such as micropolarity (I1/I3), dielectric constant (Dexp) as well as Stern–Volmer binding constants (Ksv) of mixed systems were evaluated and the results showed the synergistic performance of the AMH + 16-E2-16 mixtures. Along with tensiometric and fluorimetric techniques, FT-IR spectroscopy was also engaged to reveal the interaction among constituents.

]]>
<![CDATA[Emergence of linguistic conventions in multi-agent reinforcement learning]]> https://www.researchpad.co/article/5c09944fd5eed0c4842ae9e0

Recently, emergence of signaling conventions, among which language is a prime example, draws a considerable interdisciplinary interest ranging from game theory, to robotics to evolutionary linguistics. Such a wide spectrum of research is based on much different assumptions and methodologies, but complexity of the problem precludes formulation of a unifying and commonly accepted explanation. We examine formation of signaling conventions in a framework of a multi-agent reinforcement learning model. When the network of interactions between agents is a complete graph or a sufficiently dense random graph, a global consensus is typically reached with the emerging language being a nearly unique object-word mapping or containing some synonyms and homonyms. On finite-dimensional lattices, the model gets trapped in disordered configurations with a local consensus only. Such a trapping can be avoided by introducing a population renewal, which in the presence of superlinear reinforcement restores an ordinary surface-tension driven coarsening and considerably enhances formation of efficient signaling.

]]>
<![CDATA[The importance of mechanical constraints for proper polarization and psuedo-cleavage furrow generation in the early Caenorhabditis elegans embryo]]> https://www.researchpad.co/article/5b4f2cd2463d7e25bffba872

Intracellular polarization, where a cell specifies a spatial axis by segregation of specific factors, is a fundamental biological process. In the early embryo of the nematode worm Caenorhabditis elegans (C. elegans), polarization is often accompanied by deformations of the cortex, a highly contractile structure consisting of actin filaments cross-linked by the motor protein myosin (actomyosin). It has been suggested that the eggshell surrounding the early embryo plays a role in polarization although its function is not understood. Here we develop a mathematical model which couples a reaction-diffusion model of actomyosin dynamics with a phase field model of the cell cortex to implicitly track cell shape changes in the early C. elegans embryo. We investigate the potential rigidity effect of the geometric constraint imposed by the presence and size of the eggshell on polarization dynamics. Our model suggests that the geometric constraint of the eggshell is essential for proper polarization and the size of the eggshell also affects the dynamics of polarization. Therefore, we conclude that geometric constraint on a cell might affect the dynamics of a biochemical process.

]]>
<![CDATA[The Cerebral Surfactant System and Its Alteration in Hydrocephalic Conditions]]> https://www.researchpad.co/article/5989da3eab0ee8fa60b88f9a

Introduction

Pulmonary Surfactant reduces surface tension in the terminal airways thus facilitating breathing and contributes to host’s innate immunity. Surfactant Proteins (SP) A, B, C and D were recently identified as inherent proteins of the CNS. Aim of the study was to investigate cerebrospinal fluid (CSF) SP levels in hydrocephalus patients compared to normal subjects.

Patients and Methods

CSF SP A-D levels were quantified using commercially available ELISA kits in 126 patients (0–84 years, mean 39 years). 60 patients without CNS pathologies served as a control group. Hydrocephalus patients were separated in aqueductal stenosis (AQS, n = 24), acute hydrocephalus without aqueductal stenosis (acute HC w/o AQS, n = 16) and idiopathic normal pressure hydrocephalus (NPH, n = 20). Furthermore, six patients with pseudotumor cerebri were investigated.

Results

SP A—D are present under physiological conditions in human CSF. SP-A is elevated in diseases accompanied by ventricular enlargement (AQS, acute HC w/o AQS) in a significant manner (0.67, 1.21 vs 0.38 ng/ml in control, p<0.001). SP-C is also elevated in hydrocephalic conditions (AQS, acute HC w/o AQS; 0.87, 1.71 vs. 0.48 ng/ml in controls, p<0.001) and in Pseudotumor cerebri (1.26 vs. 0.48 ng/ml in controls, p<0.01). SP-B and SP-D did not show significant alterations.

Conclusion

The present study confirms the presence of SPs in human CSF. There are significant changes of SP-A and SP-C levels in diseases affecting brain water circulation and elevation of intracranial pressure. Cause of the alterations, underlying regulatory mechanisms, as well as diagnostic and therapeutic consequences of cerebral SP’s requires further thorough investigations.

]]>
<![CDATA[Immersed Boundary Simulations of Active Fluid Droplets]]> https://www.researchpad.co/article/5989db36ab0ee8fa60bd356c

We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way.

]]>
<![CDATA[Dynamics of initial drop splashing on a dry smooth surface]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf730

We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study.

]]>
<![CDATA[Filopodial-Tension Model of Convergent-Extension of Tissues]]> https://www.researchpad.co/article/5989d9fdab0ee8fa60b72a04

In convergent-extension (CE), a planar-polarized epithelial tissue elongates (extends) in-plane in one direction while shortening (converging) in the perpendicular in-plane direction, with the cells both elongating and intercalating along the converging axis. CE occurs during the development of most multicellular organisms. Current CE models assume cell or tissue asymmetry, but neglect the preferential filopodial activity along the convergent axis observed in many tissues. We propose a cell-based CE model based on asymmetric filopodial tension forces between cells and investigate how cell-level filopodial interactions drive tissue-level CE. The final tissue geometry depends on the balance between external rounding forces and cell-intercalation traction. Filopodial-tension CE is robust to relatively high levels of planar cell polarity misalignment and to the presence of non-active cells. Addition of a simple mechanical feedback between cells fully rescues and even improves CE of tissues with high levels of polarity misalignments. Our model extends easily to three dimensions, with either one converging and two extending axes, or two converging and one extending axes, producing distinct tissue morphologies, as observed in vivo.

]]>
<![CDATA[Bead mediated separation of microparticles in droplets]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbeb8

Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.

]]>
<![CDATA[Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf5b2

The dynamics of evaporating sessile droplets on hydrophilic or hydrophobic surfaces is widely studied, and many models for these processes have been developed based on experimental evidence. However, few research has been explored on the evaporation of sessile droplets of surfactant or pesticide solutions on target crop leaves. Thus, in this paper the impact of surfactant concentrations on contact angle, contact diameter, droplet height, and evolution of the droplets’ evaporative volume on rice leaf surfaces have been investigated. The results indicate that the evaporation kinetics of surfactant droplets on rice leaves were influenced by both the surfactant concentrations and the hydrophobicity of rice leaf surfaces. When the surfactant concentration is lower than the surfactant CMC (critical micelle concentration), the droplet evaporation time is much longer than that of the high surfactant concentration. This is due to the longer existence time of a narrow wedge region under the lower surfactant concentration, and such narrow wedge region further restricts the droplet evaporation. Besides, our experimental data are shown to roughly collapse onto theoretical curves based on the model presented by Popov. This study could supply theoretical data on the evaporation of the adjuvant or pesticide droplets for practical applications in agriculture.

]]>
<![CDATA[Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration]]> https://www.researchpad.co/article/5989dab3ab0ee8fa60bac0f4

The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before.

]]>
<![CDATA[The Effect of Tethers on Artificial Cell Membranes: A Coarse-Grained Molecular Dynamics Study]]> https://www.researchpad.co/article/5989db20ab0ee8fa60bcf2b6

Tethered bilayer lipid membranes (tBLMs) provide a stable platform for modeling the dynamics and order of biological membranes where the tethers mimic the cytoskeletal supports present in biological cell membranes. In this paper coarse-grained molecular dynamics (CGMD) is applied to study the effects of tethers on lipid membrane properties. Using results from the CGMD model and the overdamped Fokker-Planck equation, we show that the diffusion tensor and particle density of water in the tBLM is spatially dependent. Further, it is shown that the membrane thickness, lipid diffusion, defect density, free energy of lipid flip-flop, and membrane dielectric permittivity are all dependent on the tether density. The numerically computed results from the CGMD model are in agreement with the experimentally measured results from tBLMs containing different tether densities and lipids derived from Archaebacteria. Additionally, using experimental measurements from Escherichia coli bacteria and Saccharomyces Cerevisiae yeast tethered membranes, we illustrate how previous molecular dynamics results can be combined with the proposed model to estimate the dielectric permittivity and defect density of these membranes as a function of tether density.

]]>