ResearchPad - surface-treatments https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Evaluation of residue management practices on barley residue decomposition]]> https://www.researchpad.co/article/elastic_article_13875 Optimizing barley (hordeum vulgare L.) production in Idaho and other parts of the Pacific Northwest (PNW) should focus on farm resource management. The effect of post-harvest residue management on barley residue decomposition has not been adequately studied. Thus, the objective of this study was to determine the effect of residue placement (surface vs. incorporated), residue size (chopped vs. ground-sieved) and soil type (sand and sandy loam) on barley residue decomposition. A 50-day(d) laboratory incubation experiment was conducted at a temperature of 25°C at the Aberdeen Research and Extension Center, Aberdeen, Idaho, USA. Following the study, a Markov-Chain Monte Carlo (MCMC) modeling approach was applied to investigate the first-order decay kinetics of barley residue. An accelerated initial flush of residue carbon(C)-mineralization was measured for the sieved (Day 1) compared to chopped (Day 3 to 5) residues for both surface incorporated applications. The highest evolution of carbon dioxide (CO2)-C of 8.3 g kg-1 dry residue was observed on Day 1 from the incorporated-sieved application for both soils. The highest and lowest amount of cumulative CO2-C released and percentage residue decomposed over 50-d was observed for surface-chopped (107 g kg-1 dry residue and 27%, respectively) and incorporated-sieved (69 g kg-1 dry residue and 18%, respectively) residues, respectively. There were no significant differences in C-mineralization from barley residue based on soil type or its interactions with residue placement and size (p >0.05). The largest decay constant k of 0.0083 d-1 was calculated for surface-chopped residue where the predicted half-life was 80 d, which did not differ from surface sieved or incorporated chopped. In contrast, incorporated-sieved treatments only resulted in a k of 0.0054 d-1 and would need an additional 48 d to decompose 50% of the residue. Future residue decomposition studies under field conditions are warranted to verify the residue C-mineralization and its impact on residue management.

]]>
<![CDATA[The effect of Mn2Sb2 and Mn2Sb secondary phases on magnetism in (GaMn)Sb thin films]]> https://www.researchpad.co/article/N94466bcc-ad77-4d3b-8f3f-3aceb39bbed5

In this work, a detailed study of structural, electrical and magnetic characterization of (GaMn)Sb diluted magnetic semiconductors (DMS) is presented. (GaMn)Sb thin films were grown by DC magnetron co-sputtering method as an innovative procedure to fabricate III-V DMS. The presence of unusual Mn2Sb2 and Mn2Sb secondary phases, induced by substrate temperature and deposition time, were revealed through XRD measurements. Magnetization measurements allow determining crossover between a paramagnetic-like to a ferromagnetic-like behavior controlled by secondary phases. It was found that both, the magnetic remanence and magnetic coercivity, increases with substrate temperature. Interestingly, the magnetic response is paramagnetic at lower deposition times and substrate temperatures, and XRD measurements suggest the absence of Mn2Sb and Mn2Sb2 in secondary phases. For longer deposition times or higher substrate temperature, XRD shows the presence of Mn2Sb2 and Mn2Sb phases and ferromagnetic-like behavior. The DC resistivity of our samples was characterized and the carrier density was determined by Hall measurements and, in contrast with the reported in other studies, found them to be a p-type semiconductor with carrier densities as big as one order of magnitude larger than reported values. From the ferromagnetic-like samples, evidence of an anomalous Hall-effect in the sample was found, with higher magnetic saturation and a anomalous Hall conductivity of 2380 S/cm. All the results point to a contribution of the secondary phases to the overall magnetic response of the samples used, and suggest the importance of studying the formation of secondary phases in the growth of DMS, especially, for the case of (GaMn)Sb where Mn ion can have multiple oxidation states.

]]>
<![CDATA[Large-scale micron-order 3D surface correlative chemical imaging of ancient Roman concrete]]> https://www.researchpad.co/article/5c648d0ed5eed0c484c81e67

There has been significant progress in recent years aimed at the development of new analytical techniques for investigating structure-function relationships in hierarchically ordered materials. Inspired by these technological advances and the potential for applying these approaches to the study of construction materials from antiquity, we present a new set of high throughput characterization tools for investigating ancient Roman concrete, which like many ancient construction materials, exhibits compositional heterogeneity and structural complexity across multiple length scales. The detailed characterization of ancient Roman concrete at each of these scales is important for understanding its mechanics, resilience, degradation pathways, and for making informed decisions regarding its preservation. In this multi-scale characterization investigation of ancient Roman concrete samples collected from the ancient city of Privernum (Priverno, Italy), cm-scale maps with micron-scale features were collected using multi-detector energy dispersive spectroscopy (EDS) and confocal Raman microscopy on both polished cross-sections and topographically complex fracture surfaces to extract both bulk and surface information. Raman spectroscopy was used for chemical profiling and phase characterization, and data collected using EDS was used to construct ternary diagrams to supplement our understanding of the different phases. We also present a methodology for correlating data collected using different techniques on the same sample at different orientations, which shows remarkable potential in using complementary characterization approaches in the study of heterogeneous materials with complex surface topographies.

]]>
<![CDATA[Synthesis of hapten, generation of specific polyclonal antibody and development of ELISA with high sensitivity for therapeutic monitoring of crizotinib]]> https://www.researchpad.co/article/5c6b26abd5eed0c484289e48

Crizotinib (CZT) is a potent drug used for treatment of non-small cell lung cancer (NSCLC); however, its circulating concentration variability has been associated with acquired resistance and toxicity, restricting the success of cancer treatment. As such, the development of an assay that monitors CZT plasma concentrations in patients is a valuable tool in cancer treatment. In this study, a hapten of CZT was synthesized by introducing the acetohydrazide moiety as a spacer into the chemical structure of CZT. The chemical structure of the CZT acetohydrazide (hapten) was confirmed by mass, 1H-, and 13C-NMR spectrometric techniques. The hapten was coupled to each of bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH) proteins by ethyl-3-(3-dimethylaminopropyl) carbodiimide as a coupling reagent. CZT-KLH conjugate was used for immunization and generation of a polyclonal antibody recognizing CZT with high affinity (IC50 = 0.5 ng/mL). The polyclonal antibody was used in the development of an ELISA for determination of CZT. The ELISA involved a competitive binding reaction between CZT, in its samples, and immobilized CZT-BSA conjugate for the binding sites on a limited amount of the anti-CZT antibody. The assay limit of detection was 0.03 ng/mL and the working range was 0.05 − 24 ng/mL. Analytical recovery of CZT from spiked plasma was 101.98 ± 2.99%. The precisions of the assay were satisfactory; RSD was 3.2 − 6.5% and 4.8 − 8.2%, for the intra- and inter-assay precision, respectively. The assay is superior to all the existing chromatographic methods for CZT in terms of its procedure simplicity, convenience, and does not require treatment of plasma samples prior to the analysis. The proposed ELISA is anticipated to effectively contribute to the therapeutic monitoring of CZT in clinical settings.

]]>
<![CDATA[Intraoperative loading of calcium phosphate-coated implants with gentamicin prevents experimental Staphylococcus aureus infection in vivo]]> https://www.researchpad.co/article/5c5df36bd5eed0c48458127d

Orthopedic device-related infection (ODRI) is a potentially devastating complication arising from the colonization of the device with bacteria, such as Staphylococcus aureus. The aim of this study was to determine if intraoperative loading of a clinically approved calcium phosphate (CaP) coating with gentamicin can protect from ODRI in vivo. First, CaP-coated titanium aluminium niobium (TAN) discs were used to investigate the adsorption and release kinetics of gentamicin in vitro. Gentamicin loading and subsequent release from the coating were both rapid, with maximum loading occurring following one second of immersion, and >95% gentamicin released within 15 min in aqueous solution, respectively. Second, efficacy of the gentamicin-loaded CaP coating for preventing ODRI in vivo was investigated using a CaP-coated unicortical TAN screw implanted into the proximal tibia of skeletally mature female Wistar rats, following inoculation of the implant site with S. aureus. Gentamicin-loading prevented ODRI in 7/8 animals, whereas 9/9 of the non-gentamicin treated animals were infected after 7 days. In conclusion, gentamicin can be rapidly and simply loaded onto, and released from, CaP-based implant coatings, and this is an effective strategy for preventing peri-operative S. aureus-induced ODRI in vivo.

]]>
<![CDATA[Exploring the effects of electrospun fiber surface nanotopography on neurite outgrowth and branching in neuron cultures]]> https://www.researchpad.co/article/5c61e8c9d5eed0c48496f18d

Three aligned, electrospun fiber scaffolds with unique surface features were created from poly-L-lactic acid (PLLA). Fibers without surface nanotopography (smooth fibers), fibers with surface divots (shallow pits), and fibers with surface pits (deeper pits) were fabricated, and fiber alignment, diameter, and density were characterized using scanning electron microscopy (SEM). Whole dorsal root ganglia (DRG) were isolated from rats and placed onto uncoated fibers or fibers coated with laminin. On uncoated fibers, neurite outgrowth was restricted by fibers displaying divoted or pitted nanotopography when compared to neurite outgrowth on smooth fibers. However, neurites extending from whole DRG cultured on laminin-coated fibers were not restricted by divoted or pitted surface nanotopography. Thus, neurites extending on laminin-coated fibers were able to extend long neurites even in the presence of surface divots or pits. To further explore this result, individual neurons isolated from dissociated DRG were seeded onto laminin-coated smooth, pitted, or divoted fibers. Interestingly, neurons on pitted or divoted fibers exhibited a 1.5-fold increase in total neurite length, and a 2.3 or 2.7-fold increase in neurite branching compared to neurons on smooth fibers, respectively. Based on these findings, we conclude that fiber roughness in the form of pits or divots can promote extension and branching of long neurites along aligned electrospun fibers in the presence of an extracellular matrix protein coating. Thus, aligned, electrospun fibers can be crafted to not only direct the extension of axons but to induce unique branching morphologies.

]]>
<![CDATA[Macronutrient variability in human milk from donors to a milk bank: Implications for feeding preterm infants]]> https://www.researchpad.co/article/5c644934d5eed0c484c2f8a4

Background and objective

The composition of human milk varies widely and impacts the ability to meet nutrient requirements for preterm infants. The purpose of this study is to use a large dataset of milk composition from donors to a milk bank to: (1) describe the macronutrient variability in human milk and how it contributes to the ability to meet the protein and calorie targets for the preterm infant using fortification with commercially available multi-nutrient fortifiers; (2) assess how temporal versus subject effects explain macronutrient variability; (3) determine how macronutrient variability contributes to the nutrient distribution in pooled donor milk.

Methods

This is a retrospective, observational study that analyzes the macronutrient data of 1,119 human milk samples from 443 individual donors to a milk bank. We test fortification strategies with potential basic, intermediate, and high protein and calorie commercial fortifiers. Additionally, we simulate the random pooling of multiple donors to model the impact of macronutrient variability on pooled donor milk.

Results

Fat was the most variable nutrient and accounted for 80% of the difference in calories. A subject-effect predicted more of the variability after 4 weeks postpartum in all macronutrients (R2 > = 0.50) than a time-effect (R2 < = 0.28). When pooling multiple donors, variability was reduced by increasing the number of donors randomly selected for a pool or targeted pooling based on macronutrient analysis of donor pools. Over 75% of mature milk samples fortified with a basic protein fortifier did not meet daily protein targets of 3.5 g/kg without exceeding volumes of 160 ml/kg/day.

Conclusion

There is a strong individual signature to human milk that impacts the pooling of donor milk, and the ability to meet protein and energy requirements for the preterm infant with basic and intermediate protein and calorie fortifiers.

]]>
<![CDATA[Comparisons of early vascular reactions in biodegradable and durable polymer-based drug-eluting stents in the porcine coronary artery]]> https://www.researchpad.co/article/5c40f823d5eed0c48438714e

Current drug-eluting stents have abluminal polymer coating; however, thrombus formation in these compared with that in uniformly coated stents remains controversial. We evaluated thrombus formation and early endothelialization after using abluminal biodegradable polymer-coated sirolimus- (BP-SES), and everolimus-eluting stents (BP-EES) versus a durable polymer-coated everolimus-eluting stent (DP-EES) in an in vivo setting. BP-SES, BP-EES, and DP-EES (n = 6 each) were implanted in coronary arteries of 12 mini-pigs that were then sacrificed after 7 and 10 days. Stents were stained with hematoxylin and eosin, and a combined Verhoeff and Masson trichrome stain. Areas of fibrin deposition were digitally detected and measured with off-line morphometric software. Stents were investigated for re-endothelialization by transmission electron microscopy. At 7 days, histological analysis revealed the lowest area of fibrin deposition in BP-SES (BP-SES vs. BP-EES vs. DP-EES; 0.10 ± 0.06 mm2 vs. 0.15 ± 0.07 mm2 vs. 0.19 ± 0.06 mm2, p = 0.0004). At 10 days, the area of fibrin deposition was significantly greater in DP-EES (0.13 ± 0.04 mm2 vs. 0.14 ± 0.05 mm2 vs. 0.19 ± 0.08 mm2, p = 0.007). Endothelial cells in BP-SES demonstrated a significantly greater number of tight junctions than those in DP-EES according to by transmission electron microscopy for both days (p<0.05). Various parameters, including an inflammatory reaction and neointimal formation, were comparable among the groups at 7 and 10 days. An abluminal biodegradable polymer-coated SES showed the least fibrin deposition and greatest endothelial cell recovery at an early stage following implantation in the coronary arteries of mini-pigs.

]]>
<![CDATA[Live nanoscopic to mesoscopic topography reconstruction with an optical microscope for chemical and biological samples]]> https://www.researchpad.co/article/5c1ab853d5eed0c48402794b

Macroscopic properties of physical and biological processes like friction, wetting, and adhesion or cell migration are controlled by interfacial properties at the nanoscopic scale. In an attempt to bridge simultaneously investigations at different scales, we demonstrate here how optical microscopy in Wet-Surface Ellipsometric Enhanced Contrast (Wet-SEEC) mode offers imaging and measurement of thin films at solid/liquid interfaces in the range 1–500 nm with lateral optical resolution. A live, label-free and noninvasive methodology integrated with microfluidic devices allowed here characterization of polymers and proteins patterns together with corresponding phenotypes of living cells.

]]>
<![CDATA[Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field]]> https://www.researchpad.co/article/5c22a0bed5eed0c4849ebffa

Late wilt, a disease severely affecting maize fields throughout Israel, is characterized by relatively rapid wilting of maize plants before tasseling and until shortly before maturity. The disease’s causal agent is the fungus Harpophora maydis, a soil-borne and seed-borne pathogen, which is currently controlled using reduced sensitivity maize cultivars. In a former study, we showed that Azoxystrobin (AS) injected into a drip irrigation line assigned for each row can suppress H. maydis in the field and that AS seed coating can provide an additional layer of protection. In the present study, we examine a more cost-effective protective treatment using this fungicide with Difenoconazole mixture (AS+DC), or Fluazinam, or Fluopyram and Trifloxystrobin mixture, or Prothioconazole and Tebuconazole mixture in combined treatment of seed coating and a drip irrigation line for two coupling rows. A recently developed Real-Time PCR method revealed that protecting the plants using AS+DC seed coating alone managed to delay pathogen DNA spread in the maize tissues, in the early stages of the growth season (up to the age of 50 days from sowing), but was less effective in protecting the crops later. AS+DC seed coating combined with drip irrigation using AS+DC was the most successful treatment, and in the double-row cultivation, it reduced fungal DNA in the host tissues to near zero levels. This treatment minimized the development of wilt symptoms by 41% and recovered cob yield by a factor of 1.6 (to the level common in healthy fields). Moreover, the yield classified as A class (cob weight of more than 250 g) increased from 58% to 75% in this treatment. This successful treatment against H. maydis in Israel can now be applied in vast areas to protect sensitive maize cultivars against maize late wilt disease.

]]>
<![CDATA[Absence of genetic selection in a pathogenic Escherichia coli strain exposed to the manure-amended soil environment]]> https://www.researchpad.co/article/5c141e62d5eed0c484d265cd

Escherichia coli that express curli are more common in subsurface soil drainage when manure is surface applied. However, it is unknown whether this arises from mutations in individual strains leading to curli expression or by selection for individuals already expressing higher levels of curli. To test this, we examined curli production in pathogenic E. coli O157:H7 EDL933 as a function of manure management. Five treatments were investigated: (1) soil only, (2) soil with surface-applied E. coli O157:H7 EDL933 Δstx1-2 (EcO157), (3) soil with incorporated EcO157, (4) soil with surface-applied EcO157-inoculated manure, and (5) soil with incorporated EcO157-inoculated manure. EcO157 was reisolated from soils immediately after application and weekly thereafter for 8 weeks. EcO157 in the surface-applied treatments died faster than their incorporated treatment counterparts. Phenotypic assays revealed differences between treatments as well. Half of surface-applied manure reisolates from week 6 developed a mixed red and white colony morphology on Congo Red plates, indicating changes in curli production that were not seen in other treatments or times. In 37°C growth tests, week 6 reisolates from all treatments except soil surface-applied EcO157 left the lag phase at a significantly greater rate than week 0 isolates. We applied whole genome sequencing technology to interrogate the genetic underpinnings of these phenotypes. Surprisingly, we only found single-nucleotide polymorphisms in two of the 94 resequenced isolates from the different treatments, neither of which correlated with curli phenotype. Likewise, we found no differences in other genomic characteristics that might account for phenotypic differences including the count of gaps and the origin of discarded reads that failed to map to the parental strain. These results suggest there were no systematic genomic differences (i.e. individual-level selection) that correlated with time or treatment. We recommend future research focus on population-level selection of E. coli strains in the manure-amended soil environment.

]]>
<![CDATA[The Evolution of Fungicide Resistance Resulting from Combinations of Foliar-Acting Systemic Seed Treatments and Foliar-Applied Fungicides: A Modeling Analysis]]> https://www.researchpad.co/article/5989db1bab0ee8fa60bce17c

For the treatment of foliar diseases of cereals, fungicides may be applied as foliar sprays or systemic seed treatments which are translocated to leaves. Little research has been done to assess the resistance risks associated with foliar-acting systemic seed treatments when used alone or in combination with foliar sprays, even though both types of treatment may share the same mode of action. It is therefore unknown to what extent adding a systemic seed treatment to a foliar spray programme poses an additional resistance risk and whether in the presence of a seed treatment additional resistance management strategies (such as limiting the total number of treatments) are necessary to limit the evolution of fungicide-resistance. A mathematical model was developed to simulate an epidemic and the resistance evolution of Zymoseptoria tritici on winter wheat, which was used to compare different combinations of seed and foliar treatments by calculating the fungicide effective life, i.e. the number of years before effective disease control is lost to resistance. A range of parameterizations for the seed treatment fungicide and different fungicide uptake models were compared. Despite the different parameterizations, the model consistently predicted the same trends in that i) similar levels of efficacy delivered either by a foliar-acting seed treatment, or a foliar application, resulted in broadly similar resistance selection, ii) adding a foliar-acting seed treatment to a foliar spray programme increased resistance selection and usually decreased effective life, and iii) splitting a given total dose—by adding a seed treatment to foliar treatments, but decreasing dose per treatment—gave effective lives that were the same as, or shorter than those given by the spray programme alone. For our chosen plant-pathogen-fungicide system, the model results suggest that to effectively manage selection for fungicide-resistance, foliar acting systemic seed treatments should be included as one of the maximum number of permitted fungicide applications.

]]>
<![CDATA[Binding Cooperativity Matters: A GM1-Like Ganglioside-Cholera Toxin B Subunit Binding Study Using a Nanocube-Based Lipid Bilayer Array]]> https://www.researchpad.co/article/5989db41ab0ee8fa60bd6ef4

Protein-glycan recognition is often mediated by multivalent binding. These multivalent bindings can be further complicated by cooperative interactions between glycans and individual glycan binding subunits. Here we have demonstrated a nanocube-based lipid bilayer array capable of quantitatively elucidating binding dissociation constants, maximum binding capacity, and binding cooperativity in a high-throughput format. Taking cholera toxin B subunit (CTB) as a model cooperativity system, we studied both GM1 and GM1-like gangliosides binding to CTB. We confirmed the previously observed CTB-GM1 positive cooperativity. Surprisingly, we demonstrated fucosyl-GM1 has approximately 7 times higher CTB binding capacity than GM1. In order to explain this phenomenon, we hypothesized that the reduced binding cooperativity of fucosyl-GM1 caused the increased binding capacity. This was unintuitive, as GM1 exhibited higher binding avidity (16 times lower dissociation constant). We confirmed the hypothesis using a theoretical stepwise binding model of CTB. Moreover, by taking a mixture of fucosyl-GM1 and GM2, we observed the mild binding avidity fucosyl-GM1 activated GM2 receptors enhancing the binding capacity of the lipid bilayer surface. This was unexpected as GM2 receptors have negligible binding avidity in pure GM2 bilayers. These unexpected discoveries demonstrate the importance of binding cooperativity in multivalent binding mechanisms. Thus, quantitative analysis of multivalent protein-glycan interactions in heterogeneous glycan systems is of critical importance. Our user-friendly, robust, and high-throughput nanocube-based lipid bilayer array offers an attractive method for dissecting these complex mechanisms.

]]>
<![CDATA[Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc406

The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.

]]>
<![CDATA[Fosfomycin Addition to Poly(D,L-Lactide) Coating Does Not Affect Prophylaxis Efficacy in Rat Implant-Related Infection Model, But That of Gentamicin Does]]> https://www.researchpad.co/article/5989dae8ab0ee8fa60bbe5cb

Gentamicin is the preferred antimicrobial agent used in implant coating for the prevention of implant-related infections (IRI). However, the present heavy local and systemic administration of gentamicin can lead to increased resistance, which has made its future use uncertain, together with related preventive technologies. Fosfomycin is an alternative antimicrobial agent that lacks the cross-resistance presented by other classes of antibiotics. We evaluated the efficacy of prophylaxis of 10% fosfomycin-containing poly(D,L-lactide) (PDL) coated K-wires in a rat IRI model and compared it with uncoated (Control 1), PDL-coated (Control 2), and 10% gentamicin-containing PDL-coated groups with a single layer of coating. Stainless steel K-wires were implanted and methicillin-resistant Staphylococcus aureus (ATCC 43300) suspensions (103 CFU/10 μl) were injected into a cavity in the left tibiae. Thereafter, K-wires were removed and cultured in tryptic soy broth and then 5% sheep blood agar mediums. Sliced sections were removed from the tibiae, stained with hematoxylin-eosin, and semi-quantitatively evaluated with X-rays. The addition of fosfomycin into PDL did not affect the X-ray and histopathological evaluation scores; however, the addition of gentamicin lowered them. The addition of gentamicin showed a protective effect after the 28th day of X-ray evaluations. PDL-only coating provided no protection, while adding fosfomycin to PDL offered a 20% level protection and adding gentamicin offered 80%. Furthermore, there were 103 CFU level growths in the gentamicin-added group, while the other groups had 105. Thus, the addition of fosfomycin to PDL does not affect the efficacy of prophylaxis, but the addition of gentamicin does. We therefore do not advise the use of fosfomycin as a single antimicrobial agent in coating for IRI prophylaxis.

]]>
<![CDATA[Minor defects of the luminal integrity in arterial introducer eSheaths after transcatheter aortic valve implantation]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf621

Background

Medical devices such as implant delivery systems are commonly used during minimally invasive procedures in the cardiovascular system. These devices often have lubricious polymer coatings to reduce friction between the device and blood vessels but coatings may separate and potentially cause serious injuries to patients.

Methods

Lubricious coated eSheaths for transcatheter heart valve implantation were assessed for luminal integrity at the proximal, medial and distal part. We assessed the number, depths and area of luminal trails using environmental scanning electron microscope (ESEM), white light interferometry (WLI) and optical profilometry using area scale fractal complexity (asfc) as surface parameters. A total of 15 eSheaths were retrieved and analyzed after successful femoral transcatheter Sapien 3 implantation in patients (23 mm valve– 14F eSheath, 26 mm valve– 14F eSheath and 29 mm valve– 16F eSheath, n = 5 for each group). Unused eSheaths (14F and 16F) served as controls (n = 5 for each group).

Results

ESEM revealed significantly greater number of trails after TAVR passage with the 23 mm, 26 mm and 29 mm valves compared to unused control 14F and 16F eSheaths (13.9 ± 3.1, 14.2 ± 2.3, 15.8 ± 1.7 vs. 0.08 ± 0.1 and 1.0 ± 0.5 [n]; p ≤ 0.0001 for all comparisons). Similarly, WLI showed minor, but significantly greater areas of luminal defects after 23 mm, 26 mm and 29 mm valve implantation vs. 14F and 16F unused controls (7.5 ± 0.9, 10.3 ± 1.1, 10.4 ± 1.4 vs. 4.1 ± 0.4 and 2.2 ± 0.4 [μm2], p = 0.0081). Likewise, the 3D-surface-measurement showed comparable results after implantation of the 23 mm, 26 mm and 29 mm valves vs. 14F and 16F unused control eSheaths (79.5 ± 6.3, 105.9 ± 5.3, 98.8 ± 4.8 vs. 5.1 ± 2.8 and 5.6 ± 0.5 [asfc] p = 0.0001).

Conclusion

Measurable defects of the luminal layer occur during balloon expandable TAVR using 14F and 16F eSheaths though this is likely clinically insignificant. Further clinical investigations including a prospective assessment of minor peripheral embolization are needed to fully address the impact of this luminal defects.

]]>
<![CDATA[Development of a Competitive Cystatin C-Specific Bioassay Suitable for Repetitive Measurements]]> https://www.researchpad.co/article/5989dafdab0ee8fa60bc5623

Human cystatin C (hCC), a cysteine protease inhibitor, has been proposed as a diagnostic marker because its serum levels correlate with certain cardiovascular and kidney diseases. All current hCC assays are based on ex vivo detection. Here we describe the generation and evaluation of antibodies that allow the repetitive binding and release of hCC and hCC-fusion proteins, a prerequisite for long-term measurement, which is required for compatibility with implantable biochip devices and for the development of innovative antibody-based assays suitable for continuous in vivo and in vitro monitoring. Recombinant hCC and hCC-fusion proteins were produced in Escherichia coli and HEK293T cells and were used to generate antibodies by hybridoma technology. After screening by indirect and sandwich ELISAs, 12 monoclonal hybridoma cell lines producing hCC-specific monoclonal antibodies were identified. To determine their hCC association and dissociation properties, the antibodies were analysed by surface plasmon resonance spectroscopy, revealing three with the desired fast binding and moderate-to-fast release characteristics. The analysis of binding and dissociation in the presence of hCC and hCC-fusion proteins using fluorescence-based replacement assays showed that mAb CyDI-4 was the most suitable for further analysis. The results showed that repetitive replacement on mAb CyDI-4 was possible and that most of the change in signal intensity occurred after 20–30 min. Furthermore, the suitability of mAb CyDI-4 for serum hCC measurement was confirmed by a fluorescence-based replacement assay using serially-diluted reference serum from the Institute for Reference Materials and Measurements (ERM-DA471/IFCC). Our results suggest that the assay covers the physiological and pathological ranges of hCC.

]]>
<![CDATA[Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon]]> https://www.researchpad.co/article/5989da3bab0ee8fa60b87ee5

Introduction

Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts.

Results

The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration.

Conclusion

In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.

]]>
<![CDATA[Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa]]> https://www.researchpad.co/article/5989da15ab0ee8fa60b7afb2

Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield.

]]>
<![CDATA[Electrosprayed Molybdenum Trioxide Aqueous Solution and Its Application in Organic Photovoltaic Cells]]> https://www.researchpad.co/article/5989db13ab0ee8fa60bcc8db

A molybdenum trioxide thin film with smooth surface and uniform thickness was successfully achieved by an electrospray deposition method using an aqueous solution with a drastically low concentration of 0.05 wt%. Previous papers demonstrated that an additive solvent technique is useful for depositing the thin film by the electrospray deposition, and the high vapor pressure and a low surface tension of an additive solvent were found to be important factors. As a result, the smooth molybdenum trioxide thin film was obtained when the acetonitrile was used as the additive solvent. Furthermore, the vapor pressure of acetone is much higher than that of aqueous solution, and this indicates that the acetone is easily evaporated after spraying from the glass capillary. By optimizing a concentration of acetone in the molybdenum aqueous solution, a minimum root mean square roughness of the MoO3 thin film became 3.7 nm. In addition, an organic photovoltaic cell was also demonstrated using the molybdenum trioxide as a hole transport layer. Highest photoconversion efficiency was 1.72%, a value comparable to that using conventional thermal evaporation process even though the aqueous solution was used for the solution process. The photovonversion efficiency was not an optimized value, and the higher value can be achieved by optimizing the coating condition of the active layer.

]]>