ResearchPad - synthetic-bioengineering https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[When two are better than one: Modeling the mechanisms of antibody mixtures]]> https://www.researchpad.co/article/elastic_article_14641 With the rise of new antibody combinations in therapeutic regimens, it is important to understand how antibodies work together as well as individually. Here, we investigate the specific case of monoclonal antibodies targeting a cancer-causing receptor or the influenza virus and develop a statistical mechanical framework that predicts the effectiveness of a mixture of antibodies. The power of this model lies in its ability to make a large number of predictions based on a limited amount of data. For example, once 10 antibodies have been individually characterized and their epitopes have been mapped, our model can predict how any of the 210 = 1024 combinations will behave. This predictive power can aid therapeutic efforts by assessing which combinations of antibodies will elicit the most effective response.

]]>
<![CDATA[Mapping the coevolution, leadership and financing of research on viral vectors, RNAi, CRISPR/Cas9 and other genomic editing technologies]]> https://www.researchpad.co/article/N5b989351-f842-4a35-9237-928ff4c9c806

Genomic editing technologies are developing rapidly, promising significant developments for biomedicine, agriculture and other fields. In the present investigation, we analyzed and compared the process of innovation for six genomic technologies: viral vectors, RNAi, TALENs, meganucleases, ZFNs and CRISPR/Cas including the profile of the main research institutions and their funders, to understand how innovation evolved and what institutions influenced research trajectories. A Web of Science search of papers on viral vectors RNAi, CRISPR/Cas, TALENs, ZFNs and meganucleases was used to build a citation network of 16,746 papers. An analysis of network clustering combined with text mining was performed. For viral vectors, a long-term process of incremental innovation was identified, which was largely publicly funded in the United States and the European Union. The trajectory of RNAi research included clusters related to the study of RNAi as a biological phenomenon and its use in functional genomics, biomedicine and pest control. A British philanthropic organization and a US pharmaceutical company played a key role in the development of basic RNAi research and clinical application respectively, in addition to government and academic institutions. In the case of CRISPR/Cas research, basic science discoveries led to the technical improvements, and these two in turn provided the information required for the development of biomedical, agricultural, livestock and industrial applications. The trajectory of CRISPR/Cas research exhibits a geopolitical division of the investigation efforts between the US, as the main producer and funder of basic research and technical improvements, and Chinese research institutions increasingly leading applied research. Our results reflect a change in the model for financing science, with reduced public financing for basic science and applied research on publicly funded technological developments in the US, and the emergence of China as a scientific superpower, with implications for the development of applications of genomic technologies.

]]>
<![CDATA[Generation of TGFBI knockout ABCG2+/ABCB5+ double-positive limbal epithelial stem cells by CRISPR/Cas9-mediated genome editing]]> https://www.researchpad.co/article/5c6c7575d5eed0c4843cfdce

Corneal dystrophy is an autosomal dominant disorder caused by mutations of the transforming growth factor β-induced (TGFBI) gene on chromosome 5q31.8. This disease is therefore ideally suited for gene therapy using genome-editing technology. Here, we isolated human limbal epithelial stem cells (ABCG2+/ABCB5+ double-positive LESCs) and established a TGFBI knockout using RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing. An LESC clone generated with a single-guide RNA (sgRNA) targeting exon 4 of the TGFBI gene was sequenced in order to identify potential genomic insertions and deletions near the Cas9/sgRNA-target sites. A detailed analysis of the differences between wild type LESCs and the single LESC clone modified by the TGFBI-targeting sgRNA revealed two distinct mutations, an 8 bp deletion and a 14 bp deletion flanked by a single point mutation. These mutations each lead to a frameshift missense mutation and generate premature stop codons downstream in exon 4. To validate the TGFBI knockout LESC clone, we used single cell culture to isolate four individual sub-clones, each of which was found to possess both mutations present in the parent clone, indicating that the population is homogenous. Furthermore, we confirmed that TGFBI protein expression is abolished in the TGFBI knockout LESC clone using western blot analysis. Collectively, our results suggest that genome editing of TGFBI in LESCs by CRISPR/Cas9 may be useful strategy to treat corneal dystrophy.

]]>
<![CDATA[Controlling the dynamics of the Nek2 leucine zipper by engineering of “kinetic” disulphide bonds]]> https://www.researchpad.co/article/5c5df370d5eed0c4845812dc

Nek2 is a dimeric serine/ threonine protein kinase that belongs to the family of NIMA-related kinases (Neks). Its N-terminal catalytic domain and its C-terminal regulatory region are bridged by a leucine zipper, which plays an important role in the activation of Nek2’s catalytic activity. Unusual conformational dynamics on the intermediary/slow timescale has thwarted all attempts so far to determine the structure of the Nek2 leucine zipper by means of X-ray crystallography and Nuclear Magnetic Resonance (NMR). Disulfide engineering, the strategic placement of non-native disulfide bonds into flexible regions flanking the coiled coil, was used to modulate the conformational exchange dynamics of this important dimerization domain. The resulting reduction in exchange rate leads to substantial improvements of important features in NMR spectra, such as line width, coherence transfer leakage and relaxation. These effects were comprehensively analyzed for the wild type protein, two single disulfide bond-bearing mutants and another double disulfide bonds-carrying mutant. Furthermore, exchange kinetics were measured across a wide temperature range, allowing for a detailed analysis of activation energy (ΔG) and maximal rate constant (k’ex). For one mutant carrying a disulfide bond at its C-terminus, a full backbone NMR assignment could be obtained for both conformers, demonstrating the benefits of the disulfide engineering. Our study demonstrates the first successful application of ‘kinetic’ disulfide bonds for the purpose of controlling the adverse effects of protein dynamics. Firstly, this provides a promising, robust platform for the full structural and functional investigation of the Nek2 leucine zipper in the future. Secondly, this work broadens the toolbox of protein engineering by disulfide bonds through the addition of a kinetic option in addition to the well-established thermodynamic uses of disulfide bonds.

]]>
<![CDATA[Machine learning framework for assessment of microbial factory performance]]> https://www.researchpad.co/article/5c478c5fd5eed0c484bd1ec8

Metabolic models can estimate intrinsic product yields for microbial factories, but such frameworks struggle to predict cell performance (including product titer or rate) under suboptimal metabolism and complex bioprocess conditions. On the other hand, machine learning, complementary to metabolic modeling necessitates large amounts of data. Building such a database for metabolic engineering designs requires significant manpower and is prone to human errors and bias. We propose an approach to integrate data-driven methods with genome scale metabolic model for assessment of microbial bio-production (yield, titer and rate). Using engineered E. coli as an example, we manually extracted and curated a data set comprising about 1200 experimentally realized cell factories from ~100 papers. We furthermore augmented the key design features (e.g., genetic modifications and bioprocess variables) extracted from literature with additional features derived from running the genome-scale metabolic model iML1515 simulations with constraints that match the experimental data. Then, data augmentation and ensemble learning (e.g., support vector machines, gradient boosted trees, and neural networks in a stacked regressor model) are employed to alleviate the challenges of sparse, non-standardized, and incomplete data sets, while multiple correspondence analysis/principal component analysis are used to rank influential factors on bio-production. The hybrid framework demonstrates a reasonably high cross-validation accuracy for prediction of E.coli factory performance metrics under presumed bioprocess and pathway conditions (Pearson correlation coefficients between 0.8 and 0.93 on new data not seen by the model).

]]>
<![CDATA[Deep learning image recognition enables efficient genome editing in zebrafish by automated injections]]> https://www.researchpad.co/article/5c3d011cd5eed0c484038663

One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 μm to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection efficiency is as efficient as manual injection (~ 80%). Next, we tested both CRISPR/Cas9 and DNA construct injections into the zygote and obtained a comparable efficiency to that of an experienced experimentalist. Combined with a higher throughput, this results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow high-throughput applications to knock out and knock in relevant genes to study their mechanisms or pathways of interest in diverse areas of biomedical research.

]]>
<![CDATA[CRISPR-Cas9 In Situ engineering of subtilisin E in Bacillus subtilis]]> https://www.researchpad.co/article/5c3d0133d5eed0c48403922d

CRISPR-Cas systems have become widely used across all fields of biology as a genome engineering tool. With its recent demonstration in the Gram positive industrial workhorse Bacillus subtilis, this tool has become an attractive option for rapid, markerless strain engineering of industrial production hosts. Previously described strategies for CRISPR-Cas9 genome editing in B. subtilis have involved chromosomal integrations of Cas9 and single guide RNA expression cassettes, or construction of large plasmids for simultaneous transformation of both single guide RNA and donor DNA. Here we use a flexible, co-transformation approach where the single guide RNA is inserted in a plasmid for Cas9 co-expression, and the donor DNA is supplied as a linear PCR product observing an editing efficiency of 76%. This allowed multiple, rapid rounds of in situ editing of the subtilisin E gene to incorporate a salt bridge triad present in the Bacillus clausii thermotolerant homolog, M-protease. A novel subtilisin E variant was obtained with increased thermotolerance and activity.

]]>
<![CDATA[Reducing phenolic off-flavors through CRISPR-based gene editing of the FDC1 gene in Saccharomyces cerevisiae x Saccharomyces eubayanus hybrid lager beer yeasts]]> https://www.researchpad.co/article/5c3fa5d6d5eed0c484ca92ab

Today’s beer market is challenged by a decreasing consumption of traditional beer styles and an increasing consumption of specialty beers. In particular, lager-type beers (pilsner), characterized by their refreshing and unique aroma and taste, yet very uniform, struggle with their sales. The development of novel variants of the common lager yeast, the interspecific hybrid Saccharomyces pastorianus, has been proposed as a possible solution to address the need of product diversification in lager beers. Previous efforts to generate new lager yeasts through hybridization of the ancestral parental species (S. cerevisiae and S. eubayanus) yielded strains with an aromatic profile distinct from the natural biodiversity. Unfortunately, next to the desired properties, these novel yeasts also inherited unwanted characteristics. Most notably is their phenolic off-flavor (POF) production, which hampers their direct application in the industrial production processes. Here, we describe a CRISPR-based gene editing strategy that allows the systematic and meticulous introduction of a natural occurring mutation in the FDC1 gene of genetically complex industrial S. cerevisiae strains, S. eubayanus yeasts and interspecific hybrids. The resulting cisgenic POF- variants show great potential for industrial application and diversifying the current lager beer portfolio.

]]>
<![CDATA[A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: A Children’s Oncology Group study]]> https://www.researchpad.co/article/5c1c0aead5eed0c484426e6f

This study explores the genomic alterations that contribute to the formation of a unique subset of low-risk, epithelial differentiated, favorable histology Wilms tumors (WT), tumors that have been characterized by their expression of post-induction renal developmental genes (Subset 1 WT). We demonstrate copy neutral loss of heterozygosity involving 19q13.32-q13.43, unaccompanied by evidence for imprinting by DNA methylation. We further identified loss-of-function somatic mutations in TRIM28 (also known as KAP1), located at 19q13, in 8/9 Subset 1 tumors analyzed. An additional germline TRIM28 mutation was identified in one patient. Retrospective evaluation of previously analyzed WT outside of Subset 1 identified an additional tumor with anaplasia and both TRIM28 and TP53 mutations. A major function of TRIM28 is the repression of endogenous retroviruses early in development. We depleted TRIM28 in HEK293 cells, which resulted in increased expression of endogenous retroviruses, a finding also demonstrated in TRIM28-mutant WT. TRIM28 has been shown by others to be active during early renal development, and to interact with WTX, another gene recurrently mutated in WT. Our findings suggest that inactivation of TRIM28 early in renal development contributes to the formation of this unique subset of FHWTs, although the precise manner in which TRIM28 impacts both normal renal development and oncogenesis remains elusive.

]]>
<![CDATA[CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy]]> https://www.researchpad.co/article/5c117b7bd5eed0c48469961b

Arabidopsis thaliana (Arabidopsis) increases in freezing tolerance in response to low nonfreezing temperatures, a phenomenon known as cold acclimation. The CBF regulatory pathway, which contributes to cold acclimation, includes three genes—CBF1, CBF2 and CBF3—encoding closely-related transcription factors that regulate the expression of more than 100 genes—the CBF regulon—that impart freezing tolerance. Here we compare the CBF pathways of two Arabidopsis ecotypes collected from sites in Sweden (SW) and Italy (IT). Previous studies showed that the SW ecotype was more freezing tolerant than the IT ecotype and that the IT ecotype had a nonfunctional CBF2 gene. Here we present results establishing that the difference in CBF2 alleles contributes to the difference in freezing tolerance between the two ecotypes. However, other differences in the CBF pathway as well as CBF-independent pathways contribute the large majority of the difference in freezing tolerance between the two ecotypes. The results also provided evidence that most cold-induced CBF regulon genes in both the SW and IT ecotypes are coregulated by CBF-independent pathways. Additional analysis comparing our results with those published by others examining the Col-0 accession resulted in the identification of 44 CBF regulon genes that were conserved among the three accessions suggesting that they likely have important functions in life at low temperature. The comparison further supported the conclusion that the CBF pathway can account for a large portion of the increase in freezing tolerance that occurs with cold acclimation in a given accession, but that CBF-independent pathways can also make a major contribution.

]]>
<![CDATA[Identification of molecular determinants that govern distinct STIM2 activation dynamics]]> https://www.researchpad.co/article/5bf86f32d5eed0c48405a4b8

The endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecule 1 (STIM1) and STIM2, which connect ER Ca2+ depletion with extracellular Ca2+ influx, are crucial for the maintenance of Ca2+ homeostasis in mammalian cells. Despite the recent progress in unraveling the role of STIM2 in Ca2+ signaling, the mechanistic underpinnings of its activation remain underexplored. We use an engineering approach to direct ER-resident STIMs to the plasma membrane (PM) while maintaining their correct membrane topology, as well as Förster resonance energy transfer (FRET) sensors that enabled in cellulo real-time monitoring of STIM activities. This allowed us to determine the calcium affinities of STIM1 and STIM2 both in cellulo and in situ, explaining the current discrepancies in the literature. We also identified the key structural determinants, especially the corresponding G residue in STIM1, which define the distinct activation dynamics of STIM2. The chimeric E470G mutation could switch STIM2 from a slow and weak Orai channel activator into a fast and potent one like STIM1 and vice versa. The systemic dissection of STIM2 activation by protein engineering sets the stage for the elucidation of the regulation and function of STIM2-mediated signaling in mammals.

]]>
<![CDATA[Rosetta FunFolDes – A general framework for the computational design of functional proteins]]> https://www.researchpad.co/article/5bfc6223d5eed0c484ec6c7f

The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are “designable”, meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the “designability” of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins—Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo “functionless” fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis.

]]>
<![CDATA[No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice]]> https://www.researchpad.co/article/5b4f2cc6463d7e25bffba86c

CRISPR-Cas9 technologies have transformed genome-editing of experimental organisms and have immense therapeutic potential. Despite significant advances in our understanding of the CRISPR-Cas9 system, concerns remain over the potential for off-target effects. Recent studies have addressed these concerns using whole-genome sequencing (WGS) of gene-edited embryos or animals to search for de novo mutations (DNMs), which may represent candidate changes introduced by poor editing fidelity. Critically, these studies used strain-matched, but not pedigree-matched controls and thus were unable to reliably distinguish generational or colony-related differences from true DNMs. Here we used a trio design and whole genome sequenced 8 parents and 19 embryos, where 10 of the embryos were mutagenised with well-characterised gRNAs targeting the coat colour Tyrosinase (Tyr) locus. Detailed analyses of these whole genome data allowed us to conclude that if CRISPR mutagenesis were causing SNV or indel off-target mutations in treated embryos, then the number of these mutations is not statistically distinguishable from the background rate of DNMs occurring due to other processes.

]]>
<![CDATA[Synonymous Rare Arginine Codons and tRNA Abundance Affect Protein Production and Quality of TEV Protease Variant]]> https://www.researchpad.co/article/5989db0cab0ee8fa60bca682

It has been identified that a TEV protease (TEVp) variant, TEVp5M, displays improved solubility. Here, we constructed fifteen TEVp5M variants with one or more of six rare arginine codons in the coding sequence replaced with abundant E. coli arginine codons. These codon variants expressed in either E. coli BL21 (DE3) or Rossetta (DE3) showed different solubility and activity. Supply of rare tRNAs increased the tendency of certain codon variants to form insoluble aggregates at early induction stage, as determined by the fused S-tag. About 32% increase in soluble protein production of M5 variant with four synonymously mutated arginine codons was identified in Rossetta (DE3) cells using GFP fusion reporter, comparable to that of TEVp5M. After purification, two other codon variants from both E. coli strains exhibited less activity than TEVp5M on cleaving the native or modified recognition sequence incorporated between GST and E. coli diaminopropionate ammonialyase by enzyme-coupled assay, whereas purified M5 variant showed activity similar to the TEVp5M. Supply of rare tRNAs caused the decrease of activity of TEVp5M and M5 by about 21%. Our results revealed that engineering of highly soluble TEVp variants can be achieved by the combined mutations of amino acid residues and optimization of specific rare codons, whereas simple augment of rare tRNAs abundance resulted in partial loss of activity.

]]>
<![CDATA[Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents]]> https://www.researchpad.co/article/5989d9ecab0ee8fa60b6cee3

Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.

]]>
<![CDATA[Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding]]> https://www.researchpad.co/article/5989d9d9ab0ee8fa60b671b2

Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently available approaches and provides a new route to design tailored and well-controlled hybrid nanoparticles.

]]>
<![CDATA[Phospholamban Ablation Using CRISPR/Cas9 System Improves Mortality in a Murine Heart Failure Model]]> https://www.researchpad.co/article/5989da04ab0ee8fa60b7525f

Sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and its inhibitory protein called phospholamban (PLN) are pivotal for Ca2+ handling in cardiomyocyte and are known that their expression level and activity were changed in the heart failure patients. To examine whether PLN inhibition can improve survival rate as well as cardiac function in heart failure, we performed PLN ablation in calsequestrin overexpressing (CSQ-Tg) mice, a severe heart failure model, using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system. According this method, generation rate of PLN wild type mice (PLN copy >0.95) and PLN homozygous knockout (KO) mice (PLN copy <0.05) were 39.1% and 10.5%, respectively. While CSQ overexpression causes severe heart failure symptoms and premature death, a significant ameliorating effect on survival rate was observed in PLN homozygous KO/CSQ-Tg mice compared to PLN wild type/CSQ-Tg mice (median survival days are 55 and 50 days, respectively). Measurement of cardiac function with cardiac catheterization at the age of 5 weeks revealed that PLN ablation improved cardiac function in CSQ-Tg mice without affecting heart rate and blood pressure. Furthermore, increases in atrial and lung weight, an index of congestion, were significantly inhibited by PLN ablation. These results suggest that PLN deletion would be a promising approach to improve both mortality and cardiac function in the heart failure.

]]>
<![CDATA[Molecular Characterization of Salmonella enterica Serovar Aberdeen Negative for H2S Production in China]]> https://www.researchpad.co/article/5989da9cab0ee8fa60ba41e8

Salmonella enterica infections continue to be a significant burden on public health worldwide. The ability of S. enterica to produce hydrogen sulfide (H2S) is an important phenotypic characteristic used to screen and identify Salmonella with selective medium; however, H2S-negative Salmonella have recently emerged. In this study, the H2S phenotype of Salmonella isolates was confirmed, and the selected isolates were subjected to antimicrobial susceptibility testing and molecular identification by multilocus sequence typing, pulsed-field gel electrophoresis, and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs genetic operon was also analyzed. A total of 160 S. enterica serovar Aberdeen isolates were detected between 2005 and 2013 in China. Of them, seven non-H2S-producing isolates were detected. Notably, four samples yielded four pairs of isolates with different H2S phenotypes, simultaneously. The data demonstrated that H2S-negative isolates were genetically closely related to H2S-positive isolates. Three new spacers (Abe1, Abe2, and Abe3) were identified in CRISPR locus 1 in four pairs of isolates with different H2S phenotypes from the same samples. Sequence analysis revealed a new nonsense mutation at position 208 in the phsA gene of all non-H2S-producing isolates. Additionally, we describe a new screening procedure to avoid H2S-negative Salmonella, which would normally be overlooked during laboratory and hospital screening. The prevalence of this pathogen may be underestimated; therefore, it is important to focus on improving surveillance of this organism to control its spread.

]]>
<![CDATA[Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli]]> https://www.researchpad.co/article/5989da64ab0ee8fa60b918ba

We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.

]]>
<![CDATA[A critical analysis of computational protein design with sparse residue interaction graphs]]> https://www.researchpad.co/article/5989db54ab0ee8fa60bdd0ac

Protein design algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC). To efficiently find the GMEC, protein design algorithms must methodically reduce the conformational search space. By applying distance and energy cutoffs, the protein system to be designed can thus be represented using a sparse residue interaction graph, where the number of interacting residue pairs is less than all pairs of mutable residues, and the corresponding GMEC is called the sparse GMEC. However, ignoring some pairwise residue interactions can lead to a change in the energy, conformation, or sequence of the sparse GMEC vs. the original or the full GMEC. Despite the widespread use of sparse residue interaction graphs in protein design, the above mentioned effects of their use have not been previously analyzed. To analyze the costs and benefits of designing with sparse residue interaction graphs, we computed the GMECs for 136 different protein design problems both with and without distance and energy cutoffs, and compared their energies, conformations, and sequences. Our analysis shows that the differences between the GMECs depend critically on whether or not the design includes core, boundary, or surface residues. Moreover, neglecting long-range interactions can alter local interactions and introduce large sequence differences, both of which can result in significant structural and functional changes. Designs on proteins with experimentally measured thermostability show it is beneficial to compute both the full and the sparse GMEC accurately and efficiently. To this end, we show that a provable, ensemble-based algorithm can efficiently compute both GMECs by enumerating a small number of conformations, usually fewer than 1000. This provides a novel way to combine sparse residue interaction graphs with provable, ensemble-based algorithms to reap the benefits of sparse residue interaction graphs while avoiding their potential inaccuracies.

]]>