ResearchPad - systems-engineering https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Process evaluation of health system costing – Experience from CHSI study in India]]> https://www.researchpad.co/article/elastic_article_14482 A national study, ‘Costing of healthcare services in India’ (CHSI) aimed at generating reliable healthcare cost estimates for health technology assessment and price-setting is being undertaken in India. CHSI sampled 52 public and 40 private hospitals in 13 states and used a mixed micro-costing approach. This paper aims to outline the process, challenges and critical lessons of cost data collection to feed methodological and quality improvement of data collection.MethodsAn exploratory survey with 3 components–an online semi-structured questionnaire, group discussion and review of monitoring data, was conducted amongst CHSI data collection teams. There were qualitative and quantitative components. Difficulty in obtaining individual data was rated on a Likert scale.ResultsMean time taken to complete cost data collection in one department/speciality was 7.86(±0.51) months, majority of which was spent on data entry and data issues resolution. Data collection was most difficult for determination of equipment usage (mean difficulty score 6.59±0.52), consumables prices (6.09±0.58), equipment price(6.05±0.72), and furniture price(5.64±0.68). Human resources, drugs & consumables contributed to 78% of total cost and 31% of data collection time. However, furniture, overheads and equipment consumed 51% of time contributing only 9% of total cost. Seeking multiple permissions, absence of electronic records, multiple sources of data were key challenges causing delays.ConclusionsMicro-costing is time and resource intensive. Addressing key issues prior to data collection would ease the process of data collection, improve quality of estimates and aid priority setting. Electronic health records and availability of national cost data base would facilitate conducting costing studies. ]]> <![CDATA[Highly efficient and sensitive patient-specific quality assurance for spot-scanned proton therapy]]> https://www.researchpad.co/article/5c6f1505d5eed0c48467acb1

The purpose of this work was to develop an end-to-end patient-specific quality assurance (QA) technique for spot-scanned proton therapy that is more sensitive and efficient than traditional approaches. The patient-specific methodology relies on independently verifying the accuracy of the delivered proton fluence and the dose calculation in the heterogeneous patient volume. A Monte Carlo dose calculation engine, which was developed in-house, recalculates a planned dose distribution on the patient CT data set to verify the dose distribution represented by the treatment planning system. The plan is then delivered in a pre-treatment setting and logs of spot position and dose monitors, which are integrated into the treatment nozzle, are recorded. A computational routine compares the delivery log to the DICOM spot map used by the Monte Carlo calculation to ensure that the delivered parameters at the machine match the calculated plan. Measurements of dose planes using independent detector arrays, which historically are the standard approach to patient-specific QA, are not performed for every patient. The nozzle-integrated detectors are rigorously validated using independent detectors in regular QA intervals. The measured data are compared to the expected delivery patterns. The dose monitor reading deviations are reported in a histogram, while the spot position discrepancies are plotted vs. spot number to facilitate independent analysis of both random and systematic deviations. Action thresholds are linked to accuracy of the commissioned delivery system. Even when plan delivery is acceptable, the Monte Carlo second check system has identified dose calculation issues which would not have been illuminated using traditional, phantom-based measurement techniques. The efficiency and sensitivity of our patient-specific QA program has been improved by implementing a procedure which independently verifies patient dose calculation accuracy and plan delivery fidelity. Such an approach to QA requires holistic integration and maintenance of patient-specific and patient-independent QA.

]]>
<![CDATA[Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism]]> https://www.researchpad.co/article/5989dac8ab0ee8fa60bb331b

Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols.

]]>
<![CDATA[Gene Expression Signatures of Extracellular Matrix and Growth Factors during Embryonic Stem Cell Differentiation]]> https://www.researchpad.co/article/5989dafdab0ee8fa60bc55cd

Pluripotent stem cells are uniquely capable of differentiating into somatic cell derivatives of all three germ lineages, therefore holding tremendous promise for developmental biology studies and regenerative medicine therapies. Although temporal patterns of phenotypic gene expression have been relatively well characterized during the course of differentiation, coincident patterns of endogenous extracellular matrix (ECM) and growth factor expression that accompany pluripotent stem cell differentiation remain much less well-defined. Thus, the objective of this study was to examine the global dynamic profiles of ECM and growth factor genes associated with early stages of pluripotent mouse embryonic stem cell (ESC) differentiation. Gene expression analysis of ECM and growth factors by ESCs differentiating as embryoid bodies for up to 14 days was assessed using PCR arrays (172 unique genes total), and the results were examined using a variety of data mining methods. As expected, decreases in the expression of genes regulating pluripotent stem cell fate preceded subsequent increases in morphogen expression associated with differentiation. Pathway analysis generated solely from ECM and growth factor gene expression highlighted morphogenic cell processes within the embryoid bodies, such as cell growth, migration, and intercellular signaling, that are required for primitive tissue and organ developmental events. In addition, systems analysis of ECM and growth factor gene expression alone identified intracellular molecules and signaling pathways involved in the progression of pluripotent stem cell differentiation that were not contained within the array data set. Overall, these studies represent a novel framework to dissect the complex, dynamic nature of the extracellular biochemical milieu of stem cell microenvironments that regulate pluripotent cell fate decisions and morphogenesis.

]]>
<![CDATA[Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization]]> https://www.researchpad.co/article/5989d9f2ab0ee8fa60b6eb51

Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches.

]]>
<![CDATA[Establishment of HRASG12V Transgenic Medaka as a Stable Tumor Model for In Vivo Screening of Anticancer Drugs]]> https://www.researchpad.co/article/5989da6dab0ee8fa60b93771

Most targeted anticancer drugs have been identified by screening at the molecular or cellular level in vitro. However, many compounds selected by such costly and time-consuming screening do not prove effective against tumors in vivo. The development of anticancer drugs would thus be facilitated by the availability of an in vivo screening system based on a multicellular organism. We have now established a transgenic line of the freshwater fish medaka in which melanophores (melanocytes) proliferate in a manner dependent on heat shock–induced signaling by a human RAS oncoprotein. The human HRASG12V oncogene was expressed under the control of a melanophore-specific gene promoter in order to allow visualization of tumor growth in live fish maintained in a water tank. The expression of HRASG12V was induced as a result of Cre-mediated recombination by exposure of the fish to a temperature of 37°C for 30 min, given that the Cre gene was placed under the control of a medaka heat shock promoter. One of the stable transgenic lines developed abnormal pigment cell proliferation in the eyes and epidermis with 100% penetrance by 6 months postfertilization. Sorafenib, an inhibitor of RAS signaling, was administered to the transgenic fish and was found both to reduce the extent of melanophore proliferation and to improve survival. The transgenic medaka established here thus represents a promising in vivo system with which to screen potential anticancer drugs that target RAS signaling, and this system can readily be adapted for the screening of agents that target other oncogenes.

]]>
<![CDATA[Reconstruction and In Silico Analysis of Metabolic Network for an Oleaginous Yeast, Yarrowia lipolytica]]> https://www.researchpad.co/article/5989db2bab0ee8fa60bd1332

With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.

]]>
<![CDATA[Conceptual Model-Based Systems Biology: Mapping Knowledge and Discovering Gaps in the mRNA Transcription Cycle]]> https://www.researchpad.co/article/5989da04ab0ee8fa60b75116

We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM), a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure—the objects that comprise the system, and behavior—how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point—the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model.

]]>
<![CDATA[Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium]]> https://www.researchpad.co/article/5989d9deab0ee8fa60b68926

Microbial consortia constitute a majority of the earth's biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it self-organizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles.

]]>
<![CDATA[Portable Optical Epidural Needle-A CMOS-Based System Solution and Its Circuit Design]]> https://www.researchpad.co/article/5989daacab0ee8fa60ba997e

Epidural anesthesia is a common anesthesia method yet up to 10% of procedures fail to provide adequate analgesia. This is usually due to misinterpreting the tactile information derived from the advancing needle through the complex tissue planes. Incorrect placement also can cause dural puncture and neural injury. We developed an optic system capable of reliably identifying tissue planes surrounding the epidural space. However the new technology was too large and cumbersome for practical clinical use. We present a miniaturized version of our optic system using chip technology (first generation CMOS-based system) for logic functions. The new system was connected to an alarm that was triggered once the optic properties of the epidural were identified. The aims of this study were to test our miniaturized system in a porcine model and describe the technology to build this new clinical tool. Our system was tested in a porcine model and identified the epidural space in the lumbar, low and high thoracic regions of the spine. The new technology identified the epidural space in all but 1 of 46 attempts. Experimental results from our fabricated integrated circuit and animal study show the new tool has future clinical potential.

]]>
<![CDATA[Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures]]> https://www.researchpad.co/article/5989da55ab0ee8fa60b8ed61

We demonstrate ensemble three-dimensional cell cultures and quantitative analysis of angiogenic growth from uniform endothelial monolayers. Our approach combines two key elements: a micro-fluidic assay that enables parallelized angiogenic growth instances subject to common extracellular conditions, and an automated image acquisition and processing scheme enabling high-throughput, unbiased quantification of angiogenic growth. Because of the increased throughput of the assay in comparison to existing three-dimensional morphogenic assays, statistical properties of angiogenic growth can be reliably estimated. We used the assay to evaluate the combined effects of vascular endothelial growth factor (VEGF) and the signaling lipid sphingoshine-1-phosphate (S1P). Our results show the importance of S1P in amplifying the angiogenic response in the presence of VEGF gradients. Furthermore, the application of S1P with VEGF gradients resulted in angiogenic sprouts with higher aspect ratio than S1P with background levels of VEGF, despite reduced total migratory activity. This implies a synergistic effect between the growth factors in promoting angiogenic activity. Finally, the variance in the computed angiogenic metrics (as measured by ensemble standard deviation) was found to increase linearly with the ensemble mean. This finding is consistent with stochastic agent-based mathematical models of angiogenesis that represent angiogenic growth as a series of independent stochastic cell-level decisions.

]]>
<![CDATA[A Novel Chemotaxis Assay in 3-D Collagen Gels by Time-Lapse Microscopy]]> https://www.researchpad.co/article/5989da58ab0ee8fa60b8f68b

The directional cell response to chemical gradients, referred to as chemotaxis, plays an important role in physiological and pathological processes including development, immune response and tumor cell invasion. Despite such implications, chemotaxis remains a challenging process to study under physiologically-relevant conditions in-vitro, mainly due to difficulties in generating a well characterized and sustained gradient in substrata mimicking the in-vivo environment while allowing dynamic cell imaging. Here, we describe a novel chemotaxis assay in 3D collagen gels, based on a reusable direct-viewing chamber in which a chemoattractant gradient is generated by diffusion through a porous membrane. The diffusion process has been analysed by monitoring the concentration of FITC-labelled dextran through epifluorescence microscopy and by comparing experimental data with theoretical and numerical predictions based on Fick's law. Cell migration towards chemoattractant gradients has been followed by time-lapse microscopy and quantified by cell tracking based on image analysis techniques. The results are expressed in terms of chemotactic index (I) and average cell velocity. The assay has been tested by comparing the migration of human neutrophils in isotropic conditions and in the presence of an Interleukin-8 (IL-8) gradient. In the absence of IL-8 stimulation, 80% of the cells showed a velocity ranging from 0 to 1 µm/min. However, in the presence of an IL-8 gradient, 60% of the cells showed an increase in velocity reaching values between 2 and 7 µm/min. Furthermore, after IL-8 addition, I increased from 0 to 0.25 and 0.25 to 0.5, respectively, for the two donors examined. These data indicate a pronounced directional migration of neutrophils towards the IL-8 gradient in 3D collagen matrix. The chemotaxis assay described here can be adapted to other cell types and may serve as a physiologically relevant method to study the directed locomotion of cells in a 3D environment in response to different chemoattractants.

]]>
<![CDATA[Diagnosis of Persistent Fever in the Tropics: Set of Standard Operating Procedures Used in the NIDIAG Febrile Syndrome Study]]> https://www.researchpad.co/article/5989da41ab0ee8fa60b8a2f5

In resource-limited settings, the scarcity of skilled personnel and adequate laboratory facilities makes the differential diagnosis of fevers complex [15]. Febrile illnesses are diagnosed clinically in most rural centers, and both Rapid Diagnostic Tests (RDTs) and clinical algorithms can be valuable aids to health workers and facilitate therapeutic decisions [6,7]. The persistent fever syndrome targeted by NIDIAG is defined as presence of fever for at least one week. The NIDIAG clinical research consortium focused on potentially severe and treatable infections and therefore targeted the following conditions as differential diagnosis of persistent fever: visceral leishmaniasis (VL), human African trypanosomiasis (HAT), enteric (typhoid and paratyphoid) fever, brucellosis, melioidosis, leptospirosis, malaria, tuberculosis, amoebic liver abscess, relapsing fever, HIV/AIDS, rickettsiosis, and other infectious diseases (e.g., pneumonia). From January 2013 to October 2014, a prospective clinical phase III diagnostic accuracy study was conducted in one site in Cambodia, two sites in Nepal, two sites in Democratic Republic of the Congo (DRC), and one site in Sudan (clinicaltrials.gov no. NCT01766830). The study objectives were to (1) determine the prevalence of the target diseases in patients presenting with persistent fever, (2) assess the predictive value of clinical and first-line laboratory features, and (3) assess the diagnostic accuracy of several RDTs for the diagnosis of the different target conditions.

]]>
<![CDATA[Age-Related Adaptation of Bone-PDL-Tooth Complex: Rattus-Norvegicus as a Model System]]> https://www.researchpad.co/article/5989d9ffab0ee8fa60b7366e

Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7±0.1 to 0.9±0.2 GPa) and cementum (0.6±0.1 to 0.8±0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated.

]]>
<![CDATA[Accounting for Diffusion in Agent Based Models of Reaction-Diffusion Systems with Application to Cytoskeletal Diffusion]]> https://www.researchpad.co/article/5989db13ab0ee8fa60bcc902

Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the results of our model using Langevin dynamics simulations and note that they are in good agreement with previous experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface.

]]>
<![CDATA[Open-Source Syringe Pump Library]]> https://www.researchpad.co/article/5989dae7ab0ee8fa60bbe090

This article explores a new open-source method for developing and manufacturing high-quality scientific equipment suitable for use in virtually any laboratory. A syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them. Details are provided covering the use of the CAD software and the RepRap 3-D printer. The use of an open-source Rasberry Pi computer as a wireless control device is also illustrated. Performance of the syringe pump was assessed and the methods used for assessment are detailed. The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications.

]]>
<![CDATA[Attenuation of Cell Mechanosensitivity in Colon Cancer Cells during In Vitro Metastasis]]> https://www.researchpad.co/article/5989dabdab0ee8fa60baf837

Human colon carcinoma (HCT-8) cells show a stable transition from low to high metastatic state when cultured on appropriately soft substrates (21 kPa). Initially epithelial (E) in nature, the HCT-8 cells become rounded (R) after seven days of culture on soft substrate. R cells show a number of metastatic hallmarks [1]. Here, we use gradient stiffness substrates, a bio-MEMS force sensor, and Coulter counter assays to study mechanosensitivity and adhesion of E and R cells. We find that HCT-8 cells lose mechanosensitivity as they undergo E-to-R transition. HCT-8 R cells' stiffness, spread area, proliferation and migration become insensitive to substrate stiffness in contrast to their epithelial counterpart. They are softer, proliferative and migratory on all substrates. R cells show negligible cell-cell homotypic adhesion, as well as non-specific cell-substrate adhesion. Consequently they show the same spread area on all substrates in contrast to E cells. Taken together, these results indicate that R cells acquire autonomy and anchorage independence, and are thus potentially more invasive than E cells. To the best of our knowledge, this is the first report of quantitative data relating changes in cancer cell adhesion and stiffness during the expression of an in vitro metastasis-like phenotype.

]]>
<![CDATA[Task-Level Strategies for Human Sagittal-Plane Running Maneuvers Are Consistent with Robotic Control Policies]]> https://www.researchpad.co/article/5989da3cab0ee8fa60b88305

The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

]]>
<![CDATA[Identification of Small Molecules with Type I Interferon Inducing Properties by High-Throughput Screening]]> https://www.researchpad.co/article/5989da51ab0ee8fa60b8dda7

The continuous emergence of virus that are resistant to current anti-viral drugs, combined with the introduction of new viral pathogens for which no therapeutics are available, creates an urgent need for the development of novel broad spectrum antivirals. Type I interferon (IFN) can, by modulating the cellular expression profile, stimulate a non-specific antiviral state. The antiviral and adjuvant properties of IFN have been extensively demonstrated; however, its clinical application has been so far limited. We have developed a human cell-based assay that monitors IFN-β production for use in a high throughput screen. Using this assay we screened 94,398 small molecules and identified 18 compounds with IFN-inducing properties. Among these, 3 small molecules (C3, E51 and L56) showed activity not only in human but also in murine and canine derived cells. We further characterized C3 and showed that this molecule is capable of stimulating an anti-viral state in human-derived lung epithelial cells. Furthermore, the IFN-induction by C3 is not diminished by the presence of influenza A virus NS1 protein or hepatitis C virus NS3/4A protease, which make this molecule an interesting candidate for the development of a new type of broad-spectrum antiviral. In addition, the IFN-inducing properties of C3 also suggest its potential use as vaccine adjuvant.

]]>
<![CDATA[Redirecting Valvular Myofibroblasts into Dormant Fibroblasts through Light-mediated Reduction in Substrate Modulus]]> https://www.researchpad.co/article/5989d9fdab0ee8fa60b72c15

Fibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM) homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening. Thus, understanding which signals regulate de-activation of myofibroblasts during normal tissue repair is critical. Substrate modulus has recently been shown to regulate fibrogenic properties, proliferation and apoptosis of fibroblasts isolated from different organs. However, few studies track the cellular responses of fibroblasts to dynamic changes in the microenvironmental modulus. Here, we utilized a light-responsive hydrogel system to probe the fate of valvular myofibroblasts when the Young’s modulus of the substrate was reduced from ∼32 kPa, mimicking pre-calcified diseased tissue, to ∼7 kPa, mimicking healthy cardiac valve fibrosa. After softening the substrata, valvular myofibroblasts de-activated with decreases in α-smooth muscle actin (α-SMA) stress fibers and proliferation, indicating a dormant fibroblast state. Gene signatures of myofibroblasts (including α-SMA and connective tissue growth factor (CTGF)) were significantly down-regulated to fibroblast levels within 6 hours of in situ substrate elasticity reduction while a general fibroblast gene vimentin was not changed. Additionally, the de-activated fibroblasts were in a reversible state and could be re-activated to enter cell cycle by growth stimulation and to express fibrogenic genes, such as CTGF, collagen 1A1 and fibronectin 1, in response to TGF-β1. Our data suggest that lowering substrate modulus can serve as a cue to down-regulate the valvular myofibroblast phenotype resulting in a predominantly quiescent fibroblast population. These results provide insight in designing hydrogel substrates with physiologically relevant stiffness to dynamically redirect cell fate in vitro.

]]>