ResearchPad - systems-neuroscience https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Number of subjects required in common study designs for functional GABA magnetic resonance spectroscopy in the human brain at 3 Tesla]]> https://www.researchpad.co/article/elastic_article_6683 The impact of acquisition time on variability of GABA data. The figure shows the relative SD of regional GABA estimates across subjects. In general, there is little benefit in collecting data beyond 4 min acquisition duration in terms of improved power to detect group differences.

]]>
<![CDATA[Nitric oxide regulates the firing rate of neuronal subtypes in the guinea pig ventral cochlear nucleus]]> https://www.researchpad.co/article/Nef202de2-3c9d-4768-80ef-fa77301a8194

Abstract

The gaseous free radical, nitric oxide (NO) acts as a ubiquitous neuromodulator, contributing to synaptic plasticity in a complex way that can involve either long term potentiation or depression. It is produced by neuronal nitric oxide synthase (nNOS) which is presynaptically expressed and also located postsynaptically in the membrane and cytoplasm of a subpopulation of each major neuronal type in the ventral cochlear nucleus (VCN). We have used iontophoresis in vivo to study the effect of the NOS inhibitor L‐NAME (L‐NG‐Nitroarginine methyl ester) and the NO donors SIN‐1 (3‐Morpholinosydnonimine hydrochloride) and SNOG (S‐Nitrosoglutathione) on VCN units under urethane anaesthesia. Collectively, both donors produced increases and decreases in driven and spontaneous firing rates of some neurones. Inhibition of endogenous NO production with L‐NAME evoked a consistent increase in driven firing rates in 18% of units without much effect on spontaneous rate. This reduction of gain produced by endogenous NO was mirrored when studying the effect of L‐NAME on NMDA(N‐Methyl‐D‐aspartic acid)‐evoked excitation, with 30% of units showing enhanced NMDA‐evoked excitation during L‐NAME application (reduced NO levels). Approximately 25% of neurones contain nNOS and the NO produced can modulate the firing rate of the main principal cells: medium stellates (choppers), large stellates (onset responses) and bushy cells (primary‐like responses). The main endogenous role of NO seems to be to partly suppress driven firing rates associated with NMDA channel activity but there is scope for it to increase neural gain if there were a pathological increase in its production following hearing loss.

]]>
<![CDATA[A study of cortical and brainstem mechanisms of diffuse noxious inhibitory controls in anaesthetised normal and neuropathic rats]]> https://www.researchpad.co/article/Ncca12f43-a3c9-429b-b5bc-c4811f93cb34

Abstract

Diffuse noxious inhibitory controls (DNIC) are a mechanism of endogenous descending pain modulation and are deficient in a large proportion of chronic pain patients. However, the pathways involved remain only partially determined with several cortical and brainstem structures implicated. This study examined the role of the dorsal reticular nucleus (DRt) and infralimbic (ILC) region of the medial prefrontal cortex in DNIC. In vivo electrophysiology was performed to record from dorsal horn lamina V/VI wide dynamic range neurones with left hind paw receptive fields in anaesthetised sham‐operated and L5/L6 spinal nerve‐ligated (SNL) rats. Evoked neuronal responses were quantified in the presence and absence of a conditioning stimulus (left ear clamp). In sham rats, DNIC were reproducibly recruited by a heterotopically applied conditioning stimulus, an effect that was absent in neuropathic rats. Intra‐DRt naloxone had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. In addition, intra‐DRt naloxone blocked DNIC in sham rats, but had no effect in SNL rats. Intra‐ILC lidocaine had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. However, differential effects were observed in relation to the expression of DNIC; intra‐ILC lidocaine blocked activation of DNIC in sham rats but restored DNIC in SNL rats. These data suggest that the ILC is not directly involved in mediating DNIC but can modulate its activation and that DRt involvement in DNIC requires opioidergic signalling.

]]>