ResearchPad - theory-and-modelling https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Water structure near the surface of Weyl semimetals as catalysts in photocatalytic proton reduction]]> https://www.researchpad.co/article/elastic_article_13893 In this work, second-generation Car–Parrinello-based mixed quantum-classical mechanics molecular dynamics simulations of small nanoparticles of NbP, NbAs, TaAs, and 1T-TaS2 in water are presented. The first three materials are topological Weyl semimetals, which were recently discovered to be active catalysts in photocatalytic water splitting. The aim of this research was to correlate potential differences in the water structure in the vicinity of the nanoparticle surface with the photocatalytic activity of these materials in light induced proton reduction. The results presented herein allow explaining the catalytic activity of these Weyl semimetals: the most active material, NbP, exhibits a particularly low water coordination near the surface of the nanoparticle, whereas for 1T-TaS2, with the lowest catalytic activity, the water structure at the surface is most ordered. In addition, the photocatalytic activity of several organic and metalorganic photosensitizers in the hydrogen evolution reaction was experimentally investigated with NbP as the proton reduction catalyst. Unexpectedly, the charge of the photosensitizer plays a decisive role for the photocatalytic performance.

]]>
<![CDATA[Single-particle imaging by x-ray free-electron lasers—How many snapshots are needed?]]> https://www.researchpad.co/article/N32e7ea93-fce8-4525-b9d4-40e3459a1dbb

X-ray free-electron lasers (XFELs) open the possibility of obtaining diffraction information from a single biological macromolecule. This is because XFELs can generate extremely intense x-ray pulses that are so short that diffraction data can be collected before the sample is destroyed. By collecting a sufficient number of single-particle diffraction patterns, the three-dimensional electron density of a molecule can be reconstructed ab initio. The quality of the reconstruction depends largely on the number of patterns collected at the experiment. This paper provides an estimate of the number of diffraction patterns required to reconstruct the electron density at a targeted spatial resolution. This estimate is verified by simulations for realistic x-ray fluences, repetition rates, and experimental conditions available at modern XFELs. Employing the bacterial phytochrome as a model system, we demonstrate that sub-nanometer resolution is within reach.

]]>
<![CDATA[Imaging phonon dynamics with ultrafast electron microscopy: Kinematical and dynamical simulations]]> https://www.researchpad.co/article/Nfcf57a89-93ac-4479-81fb-272093aea1f5

Ultrafast x-ray and electron scattering techniques have proven to be useful for probing the transient elastic lattice deformations associated with photoexcited coherent acoustic phonons. Indeed, femtosecond electron imaging using an ultrafast electron microscope (UEM) has been used to directly image the influence of nanoscale structural and morphological discontinuities on the emergence, propagation, dispersion, and decay behaviors in a variety of materials. Here, we describe our progress toward the development of methods ultimately aimed at quantifying acoustic-phonon properties from real-space UEM images via conventional image simulation methods extended to the associated strain-wave lattice deformation symmetries and extents. Using a model system consisting of pristine single-crystal Ge and a single, symmetric Lamb-type guided-wave mode, we calculate the transient strain profiles excited in a wedge specimen and then apply both kinematical- and dynamical-scattering methods to simulate the resulting UEM bright-field images. While measurable contrast strengths arising from the phonon wavetrains are found for optimally oriented specimens using both approaches, incorporation of dynamical scattering effects via a multi-slice method returns better qualitative agreement with experimental observations. Contrast strengths arising solely from phonon-induced local lattice deformations are increased by nearly an order of magnitude when incorporating multiple electron scattering effects. We also explicitly demonstrate the effects of changes in global specimen orientation on the observed contrast strength, and we discuss the implications for increasing the sophistication of the model with respect to quantification of phonon properties from UEM images.

]]>
<![CDATA[Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow]]> https://www.researchpad.co/article/5af790cf463d7e7810986bb7

In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ˙0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ˙0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ˙0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.

]]>