ResearchPad - thesauri Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A content analysis-based approach to explore simulation verification and identify its current challenges]]> Verification is a crucial process to facilitate the identification and removal of errors within simulations. This study explores semantic changes to the concept of simulation verification over the past six decades using a data-supported, automated content analysis approach. We collect and utilize a corpus of 4,047 peer-reviewed Modeling and Simulation (M&S) publications dealing with a wide range of studies of simulation verification from 1963 to 2015. We group the selected papers by decade of publication to provide insights and explore the corpus from four perspectives: (i) the positioning of prominent concepts across the corpus as a whole; (ii) a comparison of the prominence of verification, validation, and Verification and Validation (V&V) as separate concepts; (iii) the positioning of the concepts specifically associated with verification; and (iv) an evaluation of verification’s defining characteristics within each decade. Our analysis reveals unique characterizations of verification in each decade. The insights gathered helped to identify and discuss three categories of verification challenges as avenues of future research, awareness, and understanding for researchers, students, and practitioners. These categories include conveying confidence and maintaining ease of use; techniques’ coverage abilities for handling increasing simulation complexities; and new ways to provide error feedback to model users.

<![CDATA[Machine learning to support social media empowered patients in cancer care and cancer treatment decisions]]>


A primary variant of social media, online support groups (OSG) extend beyond the standard definition to incorporate a dimension of advice, support and guidance for patients. OSG are complementary, yet significant adjunct to patient journeys. Machine learning and natural language processing techniques can be applied to these large volumes of unstructured text discussions accumulated in OSG for intelligent extraction of patient-reported demographics, behaviours, decisions, treatment, side effects and expressions of emotions. New insights from the fusion and synthesis of such diverse patient-reported information, as expressed throughout the patient journey from diagnosis to treatment and recovery, can contribute towards informed decision-making on personalized healthcare delivery and the development of healthcare policy guidelines.

Methods and findings

We have designed and developed an artificial intelligence based analytics framework using machine learning and natural language processing techniques for intelligent analysis and automated aggregation of patient information and interaction trajectories in online support groups. Alongside the social interactions aspect, patient behaviours, decisions, demographics, clinical factors, emotions, as subsequently expressed over time, are extracted and analysed. More specifically, we utilised this platform to investigate the impact of online social influences on the intimate decision scenario of selecting a treatment type, recovery after treatment, side effects and emotions expressed over time, using prostate cancer as a model. Results manifest the three major decision-making behaviours among patients, Paternalistic group, Autonomous group and Shared group. Furthermore, each group demonstrated diverse behaviours in post-decision discussions on clinical outcomes, advice and expressions of emotion during the twelve months following treatment. Over time, the transition of patients from information and emotional support seeking behaviours to providers of information and emotional support to other patients was also observed.


Findings from this study are a rigorous indication of the expectations of social media empowered patients, their potential for individualised decision-making, clinical and emotional needs. The increasing popularity of OSG further confirms that it is timely for clinicians to consider patient voices as expressed in OSG. We have successfully demonstrated that the proposed platform can be utilised to investigate, analyse and derive actionable insights from patient-reported information on prostate cancer, in support of patient focused healthcare delivery. The platform can be extended and applied just as effectively to any other medical condition.

<![CDATA[Product Aspect Clustering by Incorporating Background Knowledge for Opinion Mining]]>

Product aspect recognition is a key task in fine-grained opinion mining. Current methods primarily focus on the extraction of aspects from the product reviews. However, it is also important to cluster synonymous extracted aspects into the same category. In this paper, we focus on the problem of product aspect clustering. The primary challenge is to properly cluster and generalize aspects that have similar meanings but different representations. To address this problem, we learn two types of background knowledge for each extracted aspect based on two types of effective aspect relations: relevant aspect relations and irrelevant aspect relations, which describe two different types of relationships between two aspects. Based on these two types of relationships, we can assign many relevant and irrelevant aspects into two different sets as the background knowledge to describe each product aspect. To obtain abundant background knowledge for each product aspect, we can enrich the available information with background knowledge from the Web. Then, we design a hierarchical clustering algorithm to cluster these aspects into different groups, in which aspect similarity is computed using the relevant and irrelevant aspect sets for each product aspect. Experimental results obtained in both camera and mobile phone domains demonstrate that the proposed product aspect clustering method based on two types of background knowledge performs better than the baseline approach without the use of background knowledge. Moreover, the experimental results also indicate that expanding the available background knowledge using the Web is feasible.

<![CDATA[The Implicitome: A Resource for Rationalizing Gene-Disease Associations]]>

High-throughput experimental methods such as medical sequencing and genome-wide association studies (GWAS) identify increasingly large numbers of potential relations between genetic variants and diseases. Both biological complexity (millions of potential gene-disease associations) and the accelerating rate of data production necessitate computational approaches to prioritize and rationalize potential gene-disease relations. Here, we use concept profile technology to expose from the biomedical literature both explicitly stated gene-disease relations (the explicitome) and a much larger set of implied gene-disease associations (the implicitome). Implicit relations are largely unknown to, or are even unintended by the original authors, but they vastly extend the reach of existing biomedical knowledge for identification and interpretation of gene-disease associations. The implicitome can be used in conjunction with experimental data resources to rationalize both known and novel associations. We demonstrate the usefulness of the implicitome by rationalizing known and novel gene-disease associations, including those from GWAS. To facilitate the re-use of implicit gene-disease associations, we publish our data in compliance with FAIR Data Publishing recommendations [] using nanopublications. An online tool ( is available to explore established and potential gene-disease associations in the context of other biomedical relations.