ResearchPad - tibet Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Spatiotemporal trends and ecological determinants in maternal mortality ratios in 2,205 Chinese counties, 2010–2013: A Bayesian modelling analysis]]> Information about the spatiotemporal trends of the maternal mortality ratio is helpful in the policymaking response to reducing the maternal mortality ratio (MMR) in developing areas.The study can help the government to preassess the effects of policy if the corresponding magnitudes of influence of the underlying determinants can be quantified.The quantitative statistical results of national and subnational influencing effects and patterns can help the government to create policies with precision.What did the researchers do and find?We employed a Bayesian space–time model to explore the spatiotemporal trends of the MMR in 2,205 Chinese counties from 2010 to 2013 and used Bayesian multivariable regression and GeoDetector models to address 3 main ecological determinants of MMR.The major determinants of the MMR in China are medical intervention factors. The MMR will decrease by 1.787 (95% CI 1.424–2.142, p < 0.001) and 0.623 (95% CI 0.436–0.798, p < 0.001) per 100,000 live births when the proportion of hospital births and the proportion of 5 or more antenatal care visits increase by 1.0%.The major determinants for the MMR in the western and southwestern regions of China are per capita income and antenatal care, while in the eastern and southern coastal regions, it is per capita income.What do these results mean?Many countries, and particularly developing countries, may learn from China’s dramatic improvement in maternal survival rates.This progress has profited from long-term strategies to enhance delivery care in healthcare facilities and the provision of professional maternity care in large hospitals. There are, however, a variety of policy effects that have occurred in different areas due to regional heterogeneity.We have revealed the dominant factors and their corresponding influencing magnitudes at the national and subnational level, and this evidence may help China or other developing countries to preassess policy effects. ]]> <![CDATA[The reemergence of human rabies and emergence of an Indian subcontinent lineage in Tibet, China]]>

Coordinated surveillance, vaccination and public information efforts have brought the Chinese rabies epizootic under control, but significant numbers of fatalities are still reported annually with some cases occurring in previously rabies free regions. Tibet has remained virtually rabies free for 16 years, but since 2015 one human rabies case has been reported each year. To better understand the origins of these cases, we sequenced three human samples and an additional sample isolated from a dog in 2012. Three genomes were sequenced from brain samples: human case 1 (reported in 2015), human case 3 (2017), and the 2012 dog case. For human case 2 (2016), the rabies N gene was sequenced from a limited saliva sample. Phylogenetic analysis shows that Case 1 (CXZ1501H) and the dog case (CXZ1201D) belong to China IV lineage (equivalent to Arctic-like-2 in global rabies), suggesting an association with a wildlife spillover event. However, Case 2 (CXZ1601H) is placed within the dominant lineage China I, and was most similar with recent strains from neighboring Yunnan province, indicating the current epizootic has finally reached Tibet. Most surprisingly however, was the finding that Case 3 (CXZ1704H) is distinct from other Chinese isolates. This isolate is placed in the Indian Subcontinent clade, similar to recent Nepal strains, indicating that cross-border transmission is a new source for rabies infections. Thus, the complex mixture of the rabies epizootic in Tibet represents a major new challenge for Tibet and national rabies control.

<![CDATA[Preliminary study on alterations of altitude road traffic in China from 2006 to 2013]]>


Road traffic can play an important role in strengthening regional economic activities, especially at high altitude, and it is necessary to know important traffic-related information. Although previous studies reported on road traffic in China, there has been little research on high-altitude road traffic to date.


The annual official census of road traffic safety from 2006 to 2013 was used to obtain data on the general population, registered drivers, registered vehicles, newly built roads, road traffic accidents (RTAs), mortality rate per 100 000 populations and per 10 000 vehicles in high-altitude provinces, including Tibet, Qinghai, Xinjiang, Gansu, Yunnan, Sichuan, and Chongqing. These provincial data were reviewed retrospectively, with the national data as the reference. Statistical analysis (i.e., t test) was used to compare the estimated average annual change rate of population, number of registered drivers, registered vehicles, and newly built roads in high-altitude provinces with the national rates.


Compared with the national data, there are significantly higher annual rates of population growth in Tibet and Xinjiang, registered drivers in Gansu, registered vehicles in Gansu, Sichuan, and Chongqing, and newly built roads in Tibet and Qinghai. Among the investigated provinces, Tibet, Qinghai, and Yunnan had a higher proportion of the roads with the high class. RTAs and RTA-induced casualties in the high-altitude provinces indicated a decreasing trend. The mortality rate per 10 000 vehicles and per 100 000 populations showed a decreasing trend, while the RTA-related mortality rate in Tibet, Qinghai, Xinjiang and Gansu remained high.


Major changes for road traffic in high-altitude provinces have occurred over the past decade; however, the RTA-related mortality rate in high-altitude provinces has remained high. This study furthers understanding about road traffic safety in China; further studies on road traffic safety at high altitude should be performed.

<![CDATA[Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet]]>

Uncertainty about responses of vegetation index, aboveground biomass (AGB) and gross primary production (GPP) limits our ability to predict how climatic warming will influence plant growth in alpine regions. A field warming experiment was conducted in an alpine meadow at a low (4313 m), mid- (4513 m) and high elevation (4693 m) in the Northern Tibet since May 2010. Growing season vapor pressure deficit (VPD), soil temperature (Ts) and air temperature (Ta) decreased with increasing elevation, while growing season precipitation, soil moisture (SM), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), AGB and GPP increased with increasing elevation. The growing season Ta, Ts and VPD in 2015 was greater than that in 2014, while the growing season precipitation, SM, NDVI, SAVI, AGB and GPP in 2015 was lower than that in 2014, respectively. Compared to the mean air temperature and precipitation during the growing season in 1963–2015, it was a warmer and wetter year in 2014 and a warmer and drier year in 2015. Experimental warming increased growing season Ts, Ta,VPD, but decreased growing season SM in 2014–2015 at all the three elevations. Experimental warming only reduced growing season NDVI, SAVI, AGB and GPP at the low elevation in 2015. Growing season NDVI, SAVI, AGB and GPP increased with increasing SM and precipitation, but decreased with increasing VPD, indicating vegetation index and biomass production increased with environmental humidity. The VPD explained more variation of growing season NDVI, SAVI, AGB and GPP compared to Ts, Ta and SM at all the three elevations. Therefore, environmental humidity regulated the effect of experimental warming on vegetation index and biomass production in alpine meadows on the Tibetan Plateau.

<![CDATA[Isolation and Classification of Fungal Whitefly Entomopathogens from Soils of Qinghai-Tibet Plateau and Gansu Corridor in China]]>

Qinghai-Tibet Plateau and Gansu Corridor of China with distinct geographic and climatic conditions are remote and less disturbed by humans, in which are likely to find some new strains of fungal entomopathogens against B-biotype whiteflies that is a very important invading pest worldwide. In this research, nineteen strains among six species of entomogenous fungi were isolated from the soil samples collected from 32 locations in Qinghai-Tibet Plateau and Gansu Corridor. From the data of isolation rates, it was indicated that the good biodiversity of entomogenous fungi was found in the soil covered good vegetations. On the contrary, no strains were isolated from the desert areas. In addition, the dominant species, Isaria fumosorosea and Metarhizium anisopliae var. anisopliae in the Qinghai-Tibet Plateau are different from the strains of other places based on ITS genetic homology analysis. It was verified that the Qinghai-Tibet Plateau area was less disturbed by human, and the fungi in this place exchanged less compared with other regional species. All of these strains showed the pathogenicity against the B-biotype whitefly with the mortality of more than 30%. However, a few strains of Paecilomyces lilacinus, Lecanicillium psalliotae, Aspergillus ustus, I. fumosorosea and M. anisopliae var. anisopliae had better virulence with LC50s of 0.36–26.44×106 spores/mL on post-treatment day 6–7. Especially, the L. psalliotae strain LpTS01 was the greatest virulence with LC50 of 0.36×106spores/mL and LT50 of 4.23d. Our research thus presents some new insights to discover new entomopathogenic fungal strains used for B-biotype whitefly biocontrol.