ResearchPad - ticks https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Factors affecting the microbiome of <i>Ixodes scapularis</i> and <i>Amblyomma americanum</i>]]> https://www.researchpad.co/article/elastic_article_14701 The microbial community composition of disease vectors can impact pathogen establishment and transmission as well as on vector behavior and fitness. While data on vector microbiota are accumulating quickly, determinants of the variation in disease vector microbial communities are incompletely understood. We explored the microbiome of two human-biting tick species abundant in eastern North America (Amblyomma americanum and Ixodes scapularis) to identify the relative contribution of tick species, tick life stage, tick sex, environmental context and vertical transmission to the richness, diversity, and species composition of the tick microbiome. We sampled 89 adult and nymphal Ixodes scapularis (N = 49) and Amblyomma americanum (N = 40) from two field sites and characterized the microbiome of each individual using the v3-v4 hypervariable region of the 16S rRNA gene. We identified significant variation in microbial community composition due to tick species and life stage with lesser impact of sampling site. Compared to unfed nymphs and males, the microbiome of engorged adult female I. scapularis, as well as the egg masses they produced, were low in bacterial richness and diversity and were dominated by Rickettsia, suggesting strong vertical transmission of this genus. Likewise, microbiota of A. americanum nymphs and males were more diverse than those of adult females. Among bacteria of public health importance, we detected several different Rickettsia sequence types, several of which were distinct from known species. Borrelia was relatively common in I. scapularis but did not show the same level of sequence variation as Rickettsia. Several bacterial genera were significantly over-represented in Borrelia-infected I. scapularis, suggesting a potential interaction of facilitative relationship between these taxa; no OTUs were under-represented in Borrelia-infected ticks. The systematic sampling we conducted for this study allowed us to partition the variation in tick microbial composition as a function of tick- and environmentally-related factors. Upon more complete understanding of the forces that shape the tick microbiome it will be possible to design targeted experimental studies to test the impacts of individual taxa and suites of microbes on vector-borne pathogen transmission and on vector biology.

]]>
<![CDATA[Stemming the Rising Tide of Human-Biting Ticks and Tickborne Diseases, United States]]> https://www.researchpad.co/article/Na1ff348b-2dfb-4b71-aebb-9927fc857213

Ticks and tickborne diseases are increasingly problematic. There have been positive developments that should result in improved strategies and better tools to suppress ticks, reduce human tick bites, and roll back tickborne diseases. However, we equally need to address the question of who is responsible for implementing the solutions. The current model of individual responsibility for tick control evolved from a scenario in the 1990s focusing strongly on exposure to blacklegged ticks and Lyme disease spirochetes in peridomestic settings of the northeastern United States. Today, the threat posed by human-biting ticks is more widespread across the eastern United States, increasingly complex (multiple tick species and >10 notable tickborne pathogens), and, across tick species, more spatially diffuse (including backyards, neighborhood green spaces, and public recreation areas). To mitigate tick-associated negative societal effects, we must consider shifting the responsibility for tick control to include both individual persons and professionally staffed tick-management programs.

]]>
<![CDATA[Detection of municipalities at-risk of Lyme disease using passive surveillance of Ixodes scapularis as an early signal: A province-specific indicator in Canada]]> https://www.researchpad.co/article/5c75ac66d5eed0c484d086db

Lyme disease, the most commonly reported vector-borne disease in North America, is caused by the spirochete Borrelia burgdorferi sensu stricto, which is transmitted by Ixodes scapularis in eastern Canada and Ixodes pacificus in western Canada. Recently, the northward range expansion of I. scapularis ticks, in south-eastern Canada, has resulted in a dramatic increase in the incidence of human Lyme disease. Detecting emerging areas of Lyme disease risk allows public health to target disease prevention efforts. We analysed passive tick surveillance data from Ontario and Manitoba to i) assess the relationship between the total numbers of I. scapularis submissions in passive surveillance from humans, and the number of human Lyme disease cases, and ii) develop province-specific acarological indicators of risk that can be used to generate surveillance-based risk maps. We also assessed associations between numbers of nymphal I. scapularis tick submissions only and Lyme disease case incidence. Using General Estimating Equation regression, the relationship between I. scapularis submissions (total numbers and numbers of nymphs only) in each census sub-division (CSD) and the number of reported Lyme disease cases was positively correlated and highly significant in the two provinces (P ≤ 0.001). The numbers of I. scapularis submissions over five years discriminated CSDs with ≥ 3 Lyme disease cases from those with < 3 cases with high accuracy when using total numbers of tick submission (Receiver Operating Characteristics area under the curve [AUC] = 0.89) and moderate accuracy (AUC = 0.78) when using nymphal tick submissions only. In Ontario the optimal cut-off point was a total 12 tick submissions from a CSD over five years (Sensitivity = 0.82, Specificity = 0.84), while in Manitoba the cut-off point was five ticks (Sensitivity = 0.71, Specificity = 0.79) suggesting regional variability of the risk of acquiring Lyme disease from an I. scapularis bite. The performances of the acarological indicators developed in this study for Ontario and Manitoba support the ability of passive tick surveillance to provide an early signal of the existence Lyme disease risk areas in regions where ticks and the pathogens they transmit are expanding their range.

]]>
<![CDATA[The growing importance of lone star ticks in a Lyme disease endemic county: Passive tick surveillance in Monmouth County, NJ, 2006 – 2016]]> https://www.researchpad.co/article/5c6c75cbd5eed0c4843d01e0

As human cases of tick-borne disease continue to increase, there is a heightened imperative to collect data on human-tick encounters to inform disease prevention. Passive tick surveillance programs that encourage members of the public to submit ticks they have encountered can provide a relatively low-cost means of collecting such data. We report the results of 11 years of tick submissions (2006–2016) collected in Monmouth County, New Jersey, an Atlantic coastal county long endemic for Lyme disease. A total of 8,608 ticks acquired in 22 U.S. states were submitted, 89.7% of which were acquired in Monmouth County, from 52 of the County’s 53 municipalities. Seasonal submission rates reflected known phenology of common human-biting ticks, but annual submissions of both Amblyomma americanum and Dermacentor variabilis increased significantly over time while numbers of Ixodes scapularis remained static. By 2016, A. americanum had expanded northward in the county and now accounted for nearly half (48.1%) of submissions, far outpacing encounters with I. scapularis (28.2% of submissions). Across all tick species and stages the greatest number of ticks were removed from children (ages 0–9, 40.8%) and older adults (ages 50+, 23.8%) and these age groups were also more likely to submit partially or fully engorged ticks, suggesting increased risk of tick-borne disease transmission to these vulnerable age groups. Significantly more people (43.2%) reported acquiring ticks at their place of residence than in a park or natural area (17.9%). This pattern was more pronounced for residents over 60 years of age (72.7% acquired at home). Education that stresses frequent tick checks should target older age groups engaged in activity around the home. Our results strongly suggest that encounter rates with ticks other than I. scapularis are substantial and increasing and that their role in causing human illness should be carefully investigated.

]]>
<![CDATA[Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum]]> https://www.researchpad.co/article/5c65dccbd5eed0c484dec23d

Background

Tick feeding causes extreme morbidity and mortality to humans through transmission of pathogens and causes severe economic losses to the agricultural industry by reducing livestock yield. Salivary gland secretions are essential for tick feeding and thus, reducing or preventing saliva secretions into the vertebrate host is likely to reduce feeding and hinder pathogen life cycles. Unfortunately, the membrane physiology of tick salivary glands is underexplored and this gap in knowledge limits the development of novel therapeutics for inducing cessation of tick feeding.

Methodology

We studied the influence of inward rectifier potassium (Kir) channel subtypes to the functional capacity of the isolated tick salivary gland through the use of a modified Ramsay assay. The secreted saliva was subsequently used for quantification of the elemental composition of the secreted saliva after the glands were exposed to K+ channel modulators as a measure of osmoregulatory capacity. Lastly, changes to blood feeding behavior and mortality were measured with the use of a membrane feeding system.

Principal findings

In this study, we characterized the fundamental role of Kir channel subtypes in tick salivary gland function and provide evidence that pharmacological inhibition of these ion channels reduces the secretory activity of the Amblyomma americanum salivary gland. The reduced secretory capacity of the salivary gland was directly correlated with a dramatic reduction of blood ingestion during feeding. Further, exposure to small-molecule modulators of Kir channel subtypes induced mortality to ticks that is likely resultant from an altered osmoregulatory capacity.

Conclusions

Our data contribute to understanding of tick salivary gland function and could guide future campaigns aiming to develop chemical or reverse vaccinology technologies to reduce the worldwide burden of tick feeding and tick-vectored pathogens.

]]>
<![CDATA[Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus]]> https://www.researchpad.co/article/5c466531d5eed0c484517eb1

Background

Across the world, ticks act as vectors of human and animal pathogens. Ticks rely on bacterial endosymbionts, which often share close and complex evolutionary links with tick-borne pathogens. As the prevalence, diversity and virulence potential of tick-borne agents remain poorly understood, there is a pressing need for microbial surveillance of ticks as potential disease vectors.

Methodology/Principal Findings

We developed a two-stage protocol that includes 16S-amplicon screening of pooled samples of hard ticks collected from dogs, sheep and camels in Palestine, followed by shotgun metagenomics on individual ticks to detect and characterise tick-borne pathogens and endosymbionts. Two ticks isolated from sheep yielded an abundance of reads from the genus Rickettsia, which were assembled into draft genomes. One of the resulting genomes was highly similar to Rickettsia massiliae strain MTU5. Analysis of signature genes showed that the other represents the first genome sequence of the potential pathogen Candidatus Rickettsia barbariae. Ticks from a dog and a sheep yielded draft genome sequences of Coxiella strains. A sheep tick yielded sequences from the sheep pathogen Anaplasma ovis, while Hyalomma ticks from camels yielded sequences belonging to Francisella-like endosymbionts. From the metagenome of a dog tick from Jericho, we generated a genome sequence of a canine parvovirus.

Significance

Here, we have shown how a cost-effective two-stage protocol can be used to detect and characterise tick-borne pathogens and endosymbionts. In recovering genome sequences from an unexpected pathogen (canine parvovirus) and a previously unsequenced pathogen (Candidatus Rickettsia barbariae), we demonstrate the open-ended nature of metagenomics. We also provide evidence that ticks can carry canine parvovirus, raising the possibility that ticks might contribute to the spread of this troublesome virus.

]]>
<![CDATA[Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains]]> https://www.researchpad.co/article/5c23f313d5eed0c48404a3a9

Leprosy is an infectious disease caused by Mycobacterium leprae and frequently resulting in irreversible deformities and disabilities. Ticks play an important role in infectious disease transmission due to their low host specificity, worldwide distribution, and the biological ability to support transovarial transmission of a wide spectrum of pathogens, including viruses, bacteria and protozoa. To investigate a possible role for ticks as vectors of leprosy, we assessed transovarial transmission of M. leprae in artificially-fed adult female Amblyomma sculptum ticks, and infection and growth of M. leprae in tick cell lines. Our results revealed M. leprae RNA and antigens persisting in the midgut and present in the ovaries of adult female A. sculptum at least 2 days after oral infection, and present in their progeny (eggs and larvae), which demonstrates the occurrence of transovarial transmission of this pathogen. Infected tick larvae were able to inoculate viable bacilli during blood-feeding on a rabbit. Moreover, following inoculation with M. leprae, the Ixodes scapularis embryo-derived tick cell line IDE8 supported a detectable increase in the number of bacilli for at least 20 days, presenting a doubling time of approximately 12 days. As far as we know, this is the first in vitro cellular system able to promote growth of M. leprae. Finally, we successfully transformed a clinical M. leprae isolate by inserting the reporter plasmid pCHERRY3; transformed bacteria infected and grew in IDE8 cells over a 2-month period. Taken together, our data not only support the hypothesis that ticks may have the potential to act as a reservoir and/or vector of leprosy, but also suggest the feasibility of technological development of tick cell lines as a tool for large-scale production of M. leprae bacteria, as well as describing for the first time a method for their transformation.

]]>
<![CDATA[Hosts mobility and spatial spread of Rickettsia rickettsii]]> https://www.researchpad.co/article/5c2d2f01d5eed0c484d9cba2

There are a huge number of pathogens with multi-component transmission cycles, involving amplifier hosts, vectors or complex pathogen life cycles. These complex systems present challenges in terms of modeling and policy development. A lethal tick-borne infectious disease, the Brazilian Spotted Fever (BSF), is a relevant example of that. The current increase of human cases of BSF has been associated with the presence and expansion of the capybara Hydrochoerus hydrochaeris, amplifier host for the agent Rickettsia rickettsii and primary host for the tick vector Amblyomma sculptum. We introduce a stochastic dynamical model that captures the spatial distribution of capybaras and ticks to gain a better understanding of the spatial spread of the R. rickettsii and potentially predict future epidemic outcomes. We implemented a reaction-diffusion process in which individuals were divided into classes denoting their state with respect to the disease. The model considered bidirectional movements between base and destination locations limited by the carrying capacity of the environment. We performed systematic stochastic simulations and numerical analysis of the model and investigate the impact of potential interventions to mitigate the spatial spread of the disease. The mobility of capybaras and their attached ticks was significantly influenced by the birth rate of capybaras and therefore, disease propagation velocity was higher in places with higher carrying capacity. Some geographical barriers, generated for example by riparian reforesting, can impede the spatial spread of BSF. The results of this work will allow the formulation of public actions focused on the prevention of BSF human cases.

]]>
<![CDATA[Current and Future Distribution of the Lone Star Tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America]]> https://www.researchpad.co/article/5c36679cd5eed0c4841a5d65

Acarological surveys in areas outside the currently believed leading edge of the distribution of lone star ticks (Amblyomma americanum), coupled with recent reports of their identification in previously uninvaded areas in the public health literature, suggest that this species is more broadly distributed in North America than currently understood. Therefore, we evaluated the potential geographic extent under present and future conditions using ecological niche modeling approach based on museum records available for this species at the Walter Reed Biosystematics Unit (WRBU). The median prediction of a best fitting model indicated that lone star ticks are currently likely to be present in broader regions across the Eastern Seaboard as well as in the Upper Midwest, where this species could be expanding its range. Further northward and westward expansion of these ticks can be expected as a result of ongoing climate change, under both low- and high-emissions scenarios.

]]>
<![CDATA[A survey of argasid ticks and tick-associated pathogens in the Peripheral Oases around Tarim Basin and the first record of Argas japonicus in Xinjiang, China]]> https://www.researchpad.co/article/5c2d2eacd5eed0c484d9b0b4

Argasid ticks (Acari: Argasidae) carry and transmit a variety of pathogens of animals and humans, including viruses, bacteria and parasites. There are several studies reporting ixodid ticks (Acari: Ixodidae) and associated tick-borne pathogens in Xinjiang, China. However, little is known about the argasid ticks and argasid tick-associated pathogens in this area. In this study, a total of 3829 adult argasid ticks infesting livestock were collected at 12 sampling sites of 10 counties in the Peripheral Oases, which carry 90% of the livestock and humans population, around the Tarim Basin (southern Xinjiang) from 2013 to 2016. Tick specimens were identified to two species from different genera by morphology and sequences of mitochondrial 16S rRNA and 12S rRNA were derived to confirm the species designation. The results showed that the dominant argasid ticks infesting livestock in southern Xinjiang were Ornithodoros lahorensis (87.86%, 3364/3829). Ornithodoros lahorensis was distributed widely and were collected from 10 counties of southern Xinjiang. Argas japonicus was collected from Xinjiang for the first time. In addition, we screened these ticks for tick-associated pathogens and showed the presence of DNA sequences of Rickettsia spp. of Spotted fever group and Anaplasma spp. in the argasid ticks. This finding suggests the potential role for Argas japonicus as a vector of pathogens to livestock and humans.

]]>
<![CDATA[Candidatus Cryptoplasma Associated with Green Lizards and Ixodes ricinus Ticks, Slovakia, 2004–2011]]> https://www.researchpad.co/article/5c168697d5eed0c484444005

During 2004–2011, we collected green lizards and Ixodes ricinus ticks in Slovak Karst National Park in Slovakia; 90% (36/40) of lizards and 37% of ticks removed from lizards were infected with family Anaplasmataceae bacteria. Only Candidatus Cryptoplasma sp. REP (reptile) was identified in these samples. Green lizards transmit this bacterium.

]]>
<![CDATA[Phylogenetic Variants of Rickettsia africae, and Incidental Identification of "Candidatus Rickettsia Moyalensis" in Kenya]]> https://www.researchpad.co/article/5989daa6ab0ee8fa60ba798f

Background

Rickettsia africae, the etiological agent of African tick bite fever, is widely distributed in sub-Saharan Africa. Contrary to reports of its homogeneity, a localized study in Asembo, Kenya recently reported high genetic diversity. The present study aims to elucidate the extent of this heterogeneity by examining archived Rickettsia africae DNA samples collected from different eco-regions of Kenya.

Methods

To evaluate their phylogenetic relationships, archived genomic DNA obtained from 57 ticks a priori identified to contain R. africae by comparison to ompA, ompB and gltA genes was used to amplify five rickettsial genes i.e. gltA, ompA, ompB, 17kDa and sca4. The resulting amplicons were sequenced. Translated amino acid alignments were used to guide the nucleotide alignments. Single gene and concatenated alignments were used to infer phylogenetic relationships.

Results

Out of the 57 DNA samples, three were determined to be R. aeschlimanii and not R. africae. One sample turned out to be a novel rickettsiae and an interim name of “Candidatus Rickettsia moyalensis” is proposed. The bonafide R. africae formed two distinct clades. Clade I contained 9% of the samples and branched with the validated R. africae str ESF-5, while clade II (two samples) formed a distinct sub-lineage.

Conclusions

This data supports the use of multiple genes for phylogenetic inferences. It is determined that, despite its recent emergence, the R. africae lineage is diverse. This data also provides evidence of a novel Rickettsia species, Candidatus Rickettsia moyalensis.

]]>
<![CDATA[Influences of Host Community Characteristics on Borrelia burgdorferi Infection Prevalence in Blacklegged Ticks]]> https://www.researchpad.co/article/5989da0aab0ee8fa60b7762b

Lyme disease is a major vector-borne bacterial disease in the USA. The disease is caused by Borrelia burgdorferi, and transmitted among hosts and humans, primarily by blacklegged ticks (Ixodes scapularis). The ~25 B. burgdorferi genotypes, based on genotypic variation of their outer surface protein C (ospC), can be phenotypically separated as strains that primarily cause human diseases—human invasive strains (HIS)—or those that rarely do. Additionally, the genotypes are non-randomly associated with host species. The goal of this study was to examine the extent to which phenotypic outcomes of B. burgdorferi could be explained by the host communities fed upon by blacklegged ticks. In 2006 and 2009, we determined the host community composition based on abundance estimates of the vertebrate hosts, and collected host-seeking nymphal ticks in 2007 and 2010 to determine the ospC genotypes within infected ticks. We regressed instances of B. burgdorferi phenotypes on site-specific characteristics of host communities by constructing Bayesian hierarchical models that properly handled missing data. The models provided quantitative support for the relevance of host composition on Lyme disease risk pertaining to B. burgdorferi prevalence (i.e. overall nymphal infection prevalence, or NIPAll) and HIS prevalence among the infected ticks (NIPHIS). In each year, NIPAll and NIPHIS was found to be associated with host relative abundances and diversity. For mice and chipmunks, the association with NIPAll was positive, but tended to be negative with NIPHIS in both years. However, the direction of association between shrew relative abundance with NIPAll or NIPHIS differed across the two years. And, diversity (H') had a negative association with NIPAll, but positive association with NIPHIS in both years. Our analyses highlight that the relationships between the relative abundances of three primary hosts and the community diversity with NIPAll, and NIPHIS, are variable in time and space, and that disease risk inference, based on the role of host community, changes when we examine risk overall or at the phenotypic level. Our discussion focuses on the observed relationships between prevalence and host community characteristics and how they substantiate the ecological understanding of phenotypic Lyme disease risk.

]]>
<![CDATA[Expression Patterns of Anaplasma marginale msp2 Variants Change in Response to Growth in Cattle, and Tick Cells versus Mammalian Cells]]> https://www.researchpad.co/article/5989d9f2ab0ee8fa60b6ec42

Antigenic variation of major surface proteins is considered an immune-evasive maneuver used by pathogens as divergent as bacteria and protozoa. Likewise, major surface protein 2 (Msp2) of the tick-borne pathogen, Anaplasma marginale, is thought to be involved in antigenic variation to evade the mammalian host immune response. However, this dynamic process also works in the tick vector in the absence of immune selection pressure. We examined Msp2 variants expressed during infection of four tick and two mammalian cell-lines to determine if the presence of certain variants correlated with specific host cell types. Anaplasma marginale colonies differed in their development and appearance in each of the cell lines (P<0.001). Using Western blots probed with two Msp2-monospecific and one Msp2-monoclonal antibodies, we detected expression of variants with differences in molecular weight. Immunofluorescence-assay revealed that specific antibodies bound from 25 to 60% of colonies, depending on the host cell-line (P<0.001). Molecular analysis of cloned variant-encoding genes demonstrated expression of different predominant variants in tick (V1) and mammalian (V2) cell-lines. Analysis of the putative secondary structure of the variants revealed a change in structure when A. marginale was transferred from one cell-type to another, suggesting that the expression of particular Msp2 variants depended on the cell-type (tick or mammalian) in which A. marginale developed. Similarly, analysis of the putative secondary structure of over 200 Msp2 variants from ticks, blood samples, and other mammalian cells available in GenBank showed the predominance of a specific structure during infection of a host type (tick versus blood sample), demonstrating that selection of a possible structure also occurred in vivo. The selection of a specific structure in surface proteins may indicate that Msp2 fulfils an important role in infection and adaptation to diverse host systems. Supplemental Abstract in Spanish (File S1) is provided.

]]>
<![CDATA[Phylogeographic Characterization of Tick-Borne Encephalitis Virus from Patients, Rodents and Ticks in Slovenia]]> https://www.researchpad.co/article/5989db4bab0ee8fa60bda2f0

Tick-borne encephalitis virus (TBEV) is the most important arboviral agent causing infections of the central nervous system in central Europe. Previous studies have shown that TBEV exhibits pronounced genetic variability, which is often correlated to the geographical origin of TBEV. Genetic variability of TBEV has previously been studied predominantly in rodents and ticks, while information about the variability in patients is scarce. In order to understand the molecular relationships of TBEV between natural hosts, vectors and humans, as well as correlation between phylogenetic and geographical clustering, sequences of TBEV E and NS5 protein genes, were obtained by direct sequencing of RT-PCR products from TBE-confirmed patients as well as from rodents and ticks collected from TBE-endemic regions in Slovenia. A total of 27 partial E protein gene sequences representing 15 human, 4 rodent and 8 tick samples and 30 partial NS5 protein gene sequences representing 17 human, 5 rodent and 8 tick samples were obtained. The complete genome sequence of TBEV strain Ljubljana I was simultaneously obtained. Phylogenetic analysis of the E and NS5 protein gene sequences revealed a high degree of TBEV variability in patients, ticks and rodents. Furthermore, an evident correlation between geographical and phylogenetic clustering was shown that was independent of the TBEV host. Moreover, we show the presence of a possible recombination event in the TBEV genome obtained from a patient sample, which was supported with multiple recombination event detection methods. This is the first study that simultaneously analyzed the genetic relationships of directly sequenced TBEV samples from patients, ticks and rodents and provides the largest set of patient-derived TBEV sequences up to date. In addition, we have confirmed the geographical clustering of TBEV sequences in Slovenia and have provided evidence of a possible recombination event in the TBEV genome, obtained from a patient.

]]>
<![CDATA[Severe Fever with Thrombocytopenia Syndrome in South Korea, 2013-2015]]> https://www.researchpad.co/article/5989d9ddab0ee8fa60b68484

Background

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that was recently identified in China, South Korea and Japan. The objective of the study was to evaluate the epidemiologic and clinical characteristics of SFTS in South Korea.

Methods/Principal Findings

SFTS is a reportable disease in South Korea. We included all SFTS cases reported to the Korea Centers for Disease Control and Prevention (KCDC) from January 2013 to December 2015. Clinical information was gathered by reviewing medical records, and epidemiologic characteristics were analyzed using both KCDC surveillance data and patient medical records. Risk factors for mortality in patients with SFTS were assessed. A total of 172 SFTS cases were reported during the study period. SFTS occurred throughout the country, except in urban areas. Hilly areas in the eastern and southeastern regions and Jeju island (incidence, 1.26 cases /105 person-years) were the main endemic areas. The yearly incidence increased from 36 cases in 2013 to 81 cases in 2015. Most cases occurred from May to October. The overall case fatality ratio was 32.6%. The clinical progression was similar to the 3 phases reported in China: fever, multi-organ dysfunction, and convalescence. Confusion, elevated C-reactive protein, and prolonged activated partial thromboplastin times were associated with mortality in patients with SFTS. Two outbreaks of nosocomial SFTS transmission were observed.

Conclusions

SFTS is an endemic disease in South Korea, with a nationwide distribution and a high case-fatality ratio. Confusion, elevated levels of C-reactive protein, and prolonged activated partial thromboplastin times were associated with mortality in patients with SFTS.

]]>
<![CDATA[Environmental Factors Affecting Survival of Immature Ixodes scapularis and Implications for Geographical Distribution of Lyme Disease: The Climate/Behavior Hypothesis]]> https://www.researchpad.co/article/5989daadab0ee8fa60ba9e4d

Recent reports suggest that host-seeking nymphs in southern populations of Ixodes scapularis remain below the leaf litter surface, while northern nymphs seek hosts on leaves and twigs above the litter surface. This behavioral difference potentially results in decreased tick contact with humans in the south, and fewer cases of Lyme disease. We studied whether north-south differences in tick survival patterns might contribute to this phenomenon. Four month old larvae resulting from a cross between Wisconsin males and South Carolina females died faster under southern than under northern conditions in the lab, as has previously been reported for ticks from both northern and southern populations. However, newly-emerged larvae from Rhode Island parents did not differ consistently in mortality under northern and southern conditions, possibly because of their younger age. Survival is lower, and so the north-south survival difference might be greater in older ticks. Larval survival was positively related to larval size (as measured by scutal area), while survival was positively related to larval fat content in some, but not all, trials. The difference in larval survival under northern vs. southern conditions might simply result from faster metabolism under warmer southern conditions leading to shorter life spans. However, ticks consistently died faster under southern than under northern conditions in the laboratory when relative humidity was low (75%), but not under moderate (85%) or high (95%) RH. Therefore, mortality due to desiccation stress is greater under southern than under northern conditions. We hypothesize that mortality resulting from the greater desiccation stress under southern conditions acts as a selective pressure resulting in the evolution of host-seeking behavior in which immatures remain below the leaf litter surface in southern I. scapularis populations, so as to avoid the desiccating conditions at the surface. If this hypothesis is correct, it has implications for the effect of climate change on the future distribution of Lyme disease.

]]>
<![CDATA[Microarray Analyses of Inflammation Response of Human Dermal Fibroblasts to Different Strains of Borrelia burgdorferi Sensu Stricto]]> https://www.researchpad.co/article/5989da6dab0ee8fa60b93889

In Lyme borreliosis, the skin is the key site of bacterial inoculation by the infected tick, and of cutaneous manifestations, erythema migrans and acrodermatitis chronica atrophicans. We explored the role of fibroblasts, the resident cells of the dermis, in the development of the disease. Using microarray experiments, we compared the inflammation of fibroblasts induced by three strains of Borrelia burgdorferi sensu stricto isolated from different environments and stages of Lyme disease: N40 (tick), Pbre (erythema migrans) and 1408 (acrodermatitis chronica atrophicans). The three strains exhibited a similar profile of inflammation with strong induction of chemokines (CXCL1 and IL-8) and IL-6 cytokine mainly involved in the chemoattraction of immune cells. Molecules such as TNF-alpha and NF-κB factors, metalloproteinases (MMP-1, -3 and -12) and superoxide dismutase (SOD2), also described in inflammatory and cellular events, were up-regulated. In addition, we showed that tick salivary gland extracts induce a cytotoxic effect on fibroblasts and that OspC, essential in the transmission of Borrelia to the vertebrate host, was not responsible for the secretion of inflammatory molecules by fibroblasts. Tick saliva components could facilitate the early transmission of the disease to the site of injury creating a feeding pit. Later in the development of the disease, Borrelia would intensively multiply in the skin and further disseminate to distant organs.

]]>
<![CDATA[Tick–Host–Pathogen Interactions: Conflict and Cooperation]]> https://www.researchpad.co/article/5989da93ab0ee8fa60ba0d94 ]]> <![CDATA[Risk Factors for Bartonella species Infection in Blood Donors from Southeast Brazil]]> https://www.researchpad.co/article/5989dae1ab0ee8fa60bbbfa4

Bacteria from the genus Bartonella are emerging blood-borne bacteria, capable of causing long-lasting infection in marine and terrestrial mammals, including humans. Bartonella are generally well adapted to their main host, causing persistent infection without clinical manifestation. However, these organisms may cause severe disease in natural or accidental hosts. In humans, Bartonella species have been detected from sick patients presented with diverse disease manifestations, including cat scratch disease, trench fever, bacillary angiomatosis, endocarditis, polyarthritis, or granulomatous inflammatory disease. However, with the advances in diagnostic methods, subclinical bloodstream infection in humans has been reported, with the potential for transmission through blood transfusion been recently investigated by our group. The objective of this study was to determine the risk factors associated with Bartonella species infection in asymptomatic blood donors presented at a major blood bank in Southeastern Brazil. Five hundred blood donors were randomly enrolled and tested for Bartonella species infection by specialized blood cultured coupled with high-sensitive PCR assays. Epidemiological questionnaires were designed to cover major potential risk factors, such as age, gender, ethnicity, contact with companion animals, livestock, or wild animals, bites from insects or animal, economical status, among other factors. Based on multivariate logistic regression, bloodstream infection with B. henselae or B. clarridgeiae was associated with cat contact (adjusted OR: 3.4, 95% CI: 1.1–9.6) or history of tick bite (adjusted OR: 3.7, 95% CI: 1.3–13.4). These risk factors should be considered during donor screening, as bacteremia by these Bartonella species may not be detected by traditional laboratory screening methods, and it may be transmitted by blood transfusion.

]]>