ResearchPad - torque https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Can changes in implant macrogeometry accelerate the osseointegration process?: An <i>in vivo</i> experimental biomechanical and histological evaluations]]> https://www.researchpad.co/article/elastic_article_14638 The propose was to compare this new implant macrogeometry with a control implant with a conventional macrogeometry.Materials and methodsEighty-six conical implants were divided in two groups (n = 43 per group): group control (group CON) that were used conical implants with a conventional macrogeometry and, group test (group TEST) that were used implants with the new macrogeometry. The new implant macrogeometry show several circular healing cambers between the threads, distributed in the implant body. Three implants of each group were used to scanning electronic microscopy (SEM) analysis and, other eighty samples (n = 40 per group) were inserted the tibia of ten rabbit (n = 2 per tibia), determined by randomization. The animals were sacrificed (n = 5 per time) at 3-weeks (Time 1) and at 4-weeks after the implantations (Time 2). The biomechanical evaluation proposed was the measurement of the implant stability quotient (ISQ) and the removal torque values (RTv). The microscopical analysis was a histomorphometric measurement of the bone to implant contact (%BIC) and the SEM evaluation of the bone adhered on the removed implants.ResultsThe results showed that the implants of the group TEST produced a significant enhancement in the osseointegration in comparison with the group CON. The ISQ and RTv tests showed superior values for the group TEST in the both measured times (3- and 4-weeks), with significant differences (p < 0.05). More residual bone in quantity and quality was observed in the samples of the group TEST on the surface of the removed implants. Moreover, the %BIC demonstrated an important increasing for the group TEST in both times, with statistical differences (in Time 1 p = 0.0103 and in Time 2 p < 0.0003).ConclusionsThen, we can conclude that the alterations in the implant macrogeometry promote several benefits on the osseointegration process. ]]> <![CDATA[Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications]]> https://www.researchpad.co/article/Ndb8f5881-c148-4c1d-a8e2-b5151d4191da

Aim

Fuzzy wavelet neural network (FWNN) has proven to be a promising strategy in the identification of nonlinear systems. The network considers both global and local properties, deals with imprecision present in sensory data, leading to desired precisions. In this paper, we proposed a new FWNN model nominated “Fuzzy Jump Wavelet Neural Network” (FJWNN) for identifying dynamic nonlinear-linear systems, especially in practical applications.

Methods

The proposed FJWNN is a fuzzy neural network model of the Takagi-Sugeno-Kang type whose consequent part of fuzzy rules is a linear combination of input regressors and dominant wavelet neurons as a sub-jump wavelet neural network. Each fuzzy rule can locally model both linear and nonlinear properties of a system. The linear relationship between the inputs and the output is learned by neurons with linear activation functions, whereas the nonlinear relationship is locally modeled by wavelet neurons. Orthogonal least square (OLS) method and genetic algorithm (GA) are respectively used to purify the wavelets for each sub-JWNN. In this paper, fuzzy rule induction improves the structure of the proposed model leading to less fuzzy rules, inputs of each fuzzy rule and model parameters. The real-world gas furnace and the real electromyographic (EMG) signal modeling problem are employed in our study. In the same vein, piecewise single variable function approximation, nonlinear dynamic system modeling, and Mackey–Glass time series prediction, ratify this method superiority. The proposed FJWNN model is compared with the state-of-the-art models based on some performance indices such as RMSE, RRSE, Rel ERR%, and VAF%.

Results

The proposed FJWNN model yielded the following results: RRSE (mean±std) of 10e-5±6e-5 for piecewise single-variable function approximation, RMSE (mean±std) of 2.6–4±2.6e-4 for the first nonlinear dynamic system modelling, RRSE (mean±std) of 1.59e-3±0.42e-3 for Mackey–Glass time series prediction, RMSE of 0.3421 for gas furnace modelling and VAF% (mean±std) of 98.24±0.71 for the EMG modelling of all trial signals, indicating a significant enhancement over previous methods.

Conclusions

The FJWNN demonstrated promising accuracy and generalization while moderating network complexity. This improvement is due to applying main useful wavelets in combination with linear regressors and using fuzzy rule induction. Compared to the state-of-the-art models, the proposed FJWNN yielded better performance and, therefore, can be considered a novel tool for nonlinear system identification.

]]>
<![CDATA[Peak torque angle of anterior cruciate ligament-reconstructed knee flexor muscles in patients with semitendinosus and gracilis autograft is shifted towards extension regardless of the postoperative duration of supervised physiotherapy]]> https://www.researchpad.co/article/5c633944d5eed0c484ae6385

Background

The observational cohort study investigated whether the flexor muscles peak torque (PT) angle shifting towards extension observed in the involved knee in patients after anterior cruciate ligament reconstruction (ACLR) using semitendinosus and gracilis tendon (STGR) autograft is associated with the postoperative physiotherapy supervision duration.

Methods

From 230 ACL-reconstructed males, we identified patients after ACLR utilizing STGR autograft and divided them into those who completed supervised physiotherapy <6 months (Group I; n = 77) and those who completed supervised physiotherapy ≥6 months (Group II; n = 66). The mean follow-up time was 6.84 ± 1.47 months. The ACL-reconstructed patients were compared to 98 controls (Group III). Bilateral knee flexor muscle PT measurements were performed. The relative PT at 180°/s (RPT), PT angle at 180°/s, and range of motion at 180°/s were analysed. The RPT limb symmetry index (LSI) was calculated. Tests for dependent samples, one-way analysis of variance, post hoc test, and linear Pearson’s correlation coefficient (r) calculations were performed.

Results

The shift towards extension was noted when comparing the ACL-reconstructed limb to the uninvolved limb (Group I, p ≤ 0.001; Group II, p ≤ 0.001) and to Group III (p ≤ 0.001), but it was not correlated with physiotherapy supervision duration (r = -0.037, p = 0.662). In ACL-reconstructed patients, there was a moderate association of supervision duration and knee flexor LSI (r = 0.587, p < 0.001).

Conclusions

The ACL-reconstructed knee flexors PT angle shift towards extension was observed regardless of the duration of postoperative physiotherapy supervision. However, the analysis revealed that the duration of supervised physiotherapy positively influenced the RPT and LSI in patients after the ACLR.

]]>
<![CDATA[Associations between cervical disc degeneration and muscle strength in a cross-sectional population-based study]]> https://www.researchpad.co/article/5c57e6dbd5eed0c484ef3f9e

The physical and biochemical factors related to cervical disc degeneration (CDD), which is involved in several spinal disorders, remain uncertain. We investigated associations between CDD and muscle strength in a general Japanese population. We used mid-sagittal-plane MRIs to assess CDD in 344 subjects recruited from participants in our community health-check project, and measured body mass index (BMI), skeletal muscle index (SMI), and muscle strength in the neck, trunk, hands, and legs. CDD was scored based on the prevalence and severity of intravertebral disc degeneration. Spearman correlation coefficients were used to evaluate whether the SMI or muscle-strength values were correlated with the disc degenerative score. Stepwise multiple linear regression analyses were then conducted with the CDD score as the dependent variable, and age, sex, BMI, and muscle strength as independent variables, for each gender. These analyses used the muscle-strength parameters that were found to be correlated with the CDD scores in the single correlation analyses. The CDD scores were similar in men and women. Men had significantly more muscle strength in the neck, trunk, hands, and legs. There was a significant negative corelation between the CDD score and the trunk strength in both sexes, handgrip in men, and leg strength in women in the single-variable correlation analysis. Including age and the limb- or trunk-muscle strength comprehensively, multiple linear regression analyses showed that age was the strongest factor that was independently associated with CDD in both sexes, and that the effects were attenuated by limb and trunk muscle strength.

]]>
<![CDATA[Dynamic stretching alone can impair slower velocity isokinetic performance of young male handball players for at least 24 hours]]> https://www.researchpad.co/article/5c57e66ed5eed0c484ef3164

There are many adult studies reporting static stretch (SS)-induced deficits and dynamic stretch (DS) performance improvements shortly after the intervention. However, there is only a single study examining stretch-induced performance changes with youth at 24 hours’ post-stretch. The objective of this study was to examine physiological responses of young trained athletes at 24-hours after experiencing SS or DS protocols. Eight young male, elite handball players (age: 16.1±5.1 years) were tested prior to-, 3-minutes and 24-hours following the three conditions (DS, SS, Control) in a randomized and counterbalanced order. Similar volumes of SS (2 repetitions of 75s for each leg) and DS (5 repetitions of 30s for each leg) involved one stretch each for the quadriceps and hamstrings. Tests included (i) two 4s maximal voluntary isometric contractions (MVC) at 60° of knee flexion with 2-min rest, (ii) two maximal isokinetic contractions each at 60°/sec and 300°/sec with 1-min rest, and (iii) two drop jumps with 30-sec rest. To simulate a full warm-up, dynamic activity including 5 minutes of aerobic cycling (70 rpm; 1 kilopond), 4 submaximal isometric contractions and 4 drop jumps were instituted before the pre-tests and following the interventions. Two-way repeated measures ANOVAs revealed that 1) both the SS and control conditions exhibited knee extensor 60°.s-1 (SS:-10.3%; p = 0.04, Control: -8.7%; p = 0.07) and 300°.s-1 (SS: -12.9%; p = 0.005, Control: -16.3%; p = 0.02) isokinetic deficits at post-test, 2) DS impaired knee flexor 60°.s-1 isokinetic work and power-related measures at post-test (Work: -10.1%; p = 0.0006; Power: -19.1%; p = 0.08) and at 24-hours’ post-test (Work: 9.9%; p = 0.023; Power: -9.6%; p = 0.01), 3) DS (12.07% and 10.47%) and SS (13.7% and 14.6%) enhanced knee flexor 300°.s-1 isokinetic force and power-related measures compared to control. In conclusion, testing-induced knee extensor isokinetic impairments were counterbalanced by DS, however the hip flexion DS could have produced minor muscle damage for at least 24-hours decreasing knee flexor forces and power at 60°.s-1.

]]>
<![CDATA[Eccentric cycling does not improve cycling performance in amateur cyclists]]> https://www.researchpad.co/article/5c3667acd5eed0c4841a5fd5

Eccentric cycling training induces muscle hypertrophy and increases joint power output in non-athletes. Moreover, eccentric cycling can be considered a movement-specific type of strength training for cyclists, but it is hitherto unknown if eccentric cycling training can improve cycling performance in trained cyclists. Twenty-three male amateur cyclists were randomized to an eccentric or a concentric cycling training group. The eccentric cycling was performed at a low cadence (~40 revolution per minute) and the intensity was controlled by perceived effort (12–17 on the Borgs scale) during 2 min intervals (repeated 5–8 times). The cadence and perceived effort of the concentric group matched those of the eccentric group. Additionally, after the eccentric or concentric cycling, both groups performed traditionally aerobic intervals with freely chosen cadence in the same session (4–5 x 4–15 min). The participants trained twice a week for 10 weeks. Maximal oxygen uptake (VO2max), maximal aerobic power output (Wmax), lactate threshold, isokinetic strength, muscle thickness, pedaling characteristics and cycling performance (6- and 30-sec sprints and a 20-min time trial test) were assessed before and after the intervention period. Inferences about the true value of the effects were evaluated using probabilistic magnitude-based inferences. Eccentric cycling induced muscle hypertrophy (2.3 ± 2.5% more than concentric) and augmented eccentric strength (8.8 ± 5.9% more than concentric), but these small magnitude effects seemed not to transfer into improvements in the physiological assessments or cycling performance. On the contrary, the eccentric training appeared to have limiting or detrimental effects on cycling performance, measured as Wmax and a 20-min time trial. In conclusion, eccentric cycling training did not improve cycling performance in amateur cyclists. Further research is required to ascertain whether the present findings reflect an actual lack of efficacy, negative effects or a delayed response to eccentric cycling training.

]]>
<![CDATA[Reproducibility of isokinetic strength assessment of knee muscle actions in adult athletes: Torques and antagonist-agonist ratios derived at the same angle position]]> https://www.researchpad.co/article/5b8acdf940307c144d0de05f

The current study aimed to examine the reliability of the conventional and functional ratios derived from peak torques (PTs) and those obtained from the combination of knee flexors torque at the angle of knee extensors PT. Twenty-six male athletes (mean of 24.0±0.7 years) from different sports completed a test-to-test variation in isokinetic strength (Biodex, System 3) within a period of one week. Anthropometry and body composition assessed by Dual Energy X-ray Absorptiometry were also measured. The proposed isokinetic strength ratio measurements appeared to be highly reliable: conventional ratio at PT angle (intra-class correlation, ICC = 0.98; 95% confidence interval; 95%CI: 0.95 to 0.99); functional extension ratio at PT angle (ICC = 0.98; 95%CI: 0.96 to 0.99); and, functional flexion ratio at PT angle (ICC = 0.95; 95%CI: 0.89 to 0.98). Technical error of measurement (TEM) and associated percentage of the coefficient of variation (%CV) were as follows: conventional ratio at PT angle (TEM = 0.02; %CV = 4.1); functional extension ratio at PT angle (TEM = 0.02; %CV = 3.8); and, functional flexion ratio at PT angle (TEM = 0.03; %CV = 3.6). The current study demonstrated that the traditional and new obtained simple and combined isokinetic indicators seem highly reliable to assess muscle strength and function in adult male athletes. A single testing session seems to be sufficiently to obtain these isokinetic strength indicators.

]]>
<![CDATA[On the design of power gear trains: Insight regarding number of stages and their respective ratios]]> https://www.researchpad.co/article/5c032df9d5eed0c4844f8a6a

This paper presents a formulation for selecting the stage ratios and number of stages in a multistage transmission with a given desired total transmission ratio in a manner that maximizes efficiency, maximizes acceleration, or minimizes the mass of the transmission. The formulation is used to highlight several implications for gear train design, including the fact that minimizing rotational inertia and mass are competing objectives with respect to optimal selection of stage ratios, and that both rotational inertia and mass can often be minimized by increasing the total number of stages beyond a minimum realizable number. Additionally, a multistage transmission will generally provide maximum acceleration when the stage ratios increase monotonically from the motor to the load. The transmission will have minimum mass when the stage ratios decrease monotonically. The transmission will also provide maximum efficiency when the corresponding stages employ constant stage ratios. This paper aims to use this optimization formulation to elucidate tradeoffs between various common objectives in gear train design (efficiency, acceleration, and mass).

]]>
<![CDATA[Effects of Constant and Doublet Frequency Electrical Stimulation Patterns on Force Production of Knee Extensor Muscles]]> https://www.researchpad.co/article/5989da09ab0ee8fa60b7708d

This study compared knee extensors’ neuromuscular fatigue in response to two 30-minute stimulation patterns: constant frequency train (CFT) and doublet frequency train (DFT). Fifteen men underwent two separate sessions corresponding to each pattern. Measurements included torque evoked by each contraction and maximal voluntary contractions (MVC) measured before and immediately after the stimulation sessions. In addition, activation level and torque evoked during doublets (Pd) and tetanic contractions at 80-Hz (P80) and 20-Hz (P20) were determined in six subjects. Results indicated greater mean torque during the DFT stimulation session as compared with CFT. But, no difference was obtained between the two stimulation patterns for MVC and evoked torque decreases. Measurements conducted in the subgroup depicted a significant reduction of Pd, P20 and P80. Statistical analyses also revealed bigger P20 immediate reductions after CFT than after DFT. We concluded that DFT could be a useful stimulation pattern to produce and maintain greater force with quite similar fatigue than CFT.

]]>
<![CDATA[Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking]]> https://www.researchpad.co/article/5989d9d4ab0ee8fa60b655ff

Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

]]>
<![CDATA[The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc46f

In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users.

]]>
<![CDATA[Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance]]> https://www.researchpad.co/article/5989db4dab0ee8fa60bdade3

We recently developed a high intensity one leg dynamic exercise (OLDE) protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output) three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s), 20 s (P20) and 40 s (P40) post-exercise. Electromyographic (EMG) signal was analyzed via the root mean square (RMS) for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001). MVC60 and MVC100 recovered between P20 (P < 0.05) and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05). High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion.

]]>
<![CDATA[New evaluation index for the retainability of a swimmer’s horizontal posture]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf658

This study aims to investigate the effect of changes in buoyancy when a swimmer respires in a horizontal posture. We attempted to evaluate the levelness of swimmers’ streamline posture by simultaneously measuring the lung capacity and buoyancy under water. The buoyancy was measured based on the changes in the vertical loads of the upper and lower limbs on the subjects’ streamline posture under water. The horizontal x-axis as lung ventilation and the vertical y-axis as buoyancy forms a linear equation y = ax + b. The relation between hand (upper-limb) buoyancy and lung ventilation is defined as y = a1x + b1 and that between foot (lower-limb) buoyancy and lung ventilation as y = a2x + b2. Horizontal levelness was calculated as a ratio by dividing a2 by a1 using the inclination (a) values from these formulas for an underwater streamline posture. We defined this ratio as the breathing–balance (BB) ratio. Although the performance levels in the present study did not show any difference in the absolute quantity of air that humans can inhale in a streamline posture, the BB ratio was higher in a statistically significant manner in junior swimmers competing at international levels compared with the other groups of subjects (P < 0.001). This statistical difference in horizontal levelness, despite the absence of a noticeable difference in the absolute quantity of inhaled air, may be attributable to the way in which each person inhales and exhales air. Top-level junior swimmers that exhibited a high BB ratio might have inhaled in a way that would counteract the sinking of the lower limbs, for example, through abdominal respiration. When exhaling, on the other hand, they might have let out air gradually to mitigate the acceleration force involved in submerging the lower limbs.

]]>
<![CDATA[Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate]]> https://www.researchpad.co/article/5989dafdab0ee8fa60bc57c7

A subject-specific model of instantaneous cost of transport (ICOT) is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters—mass, height, (estimated) maximum oxygen uptake, and (estimated) maximum joint torques—are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90) inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326–0.348) of the experimental total COT (0.311–0.358) across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed) and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic) energy pathway similar to that of steady-state walking.

]]>
<![CDATA[Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc546

Purpose

The present study investigated whether neuromuscular electrical stimulation for 20 min twice a day with an electrode placed over the soleus muscle and nutritional supplementation with 19 g of protein rich lupin seeds can reduce the loss in volume and strength of the human calf musculature during long term unloading by wearing an orthotic unloading device.

Methods

Thirteen healthy male subjects (age of 26.4 ± 3.7 years) wore a Hephaistos orthosis one leg for 60 days during all habitual activities. The leg side was randomly chosen for every subject. Six subjects only wore the orthosis as control group, and 7 subjects additionally received the countermeasure consisting of neuromuscular electrical stimulation of the soleus and lateral gastrocnemius muscles and lupin protein supplementation. Twenty-eight days before and on the penultimate day of the intervention cross-sectional images of the calf muscles were taken by magnetic resonance imaging (controls n = 5), and maximum voluntary torque (controls n = 6) of foot plantar flexion was estimated under isometric (extended knee, 90° knee flexion) and isokinetic conditions (extended knee), respectively.

Results

After 58 days of wearing the orthosis the percentage loss of volume in the entire triceps surae muscle of the control subjects (-11.9 ± 4.4%, mean ± standard deviation) was reduced by the countermeasure (-3.5 ± 7.2%, p = 0.032). Wearing the orthosis generally reduced plantar flexion torques values, however, only when testing isometric contraction at 90° knee ankle the countermeasure effected a significantly lower percentage decrease of torque (-9.7 ± 7.2%, mean ± SD) in comparison with controls (-22.3 ± 11.2%, p = 0.032).

Conclusion

Unloading of calf musculature by an orthotic device resulted in the expected loss of muscle volume and maximum of plantar flexion torque. Neuromuscular electrical muscle stimulation and lupin protein supplementation could significantly reduce the process of atrophy.

Trial registration

ClinicalTrials.gov, identifier NCT02698878

]]>
<![CDATA[Generation of the Human Biped Stance by a Neural Controller Able to Compensate Neurological Time Delay]]> https://www.researchpad.co/article/5989da74ab0ee8fa60b95d9d

The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption.

]]>
<![CDATA[Morphological Computation of Haptic Perception of a Controllable Stiffness Probe]]> https://www.researchpad.co/article/5989db48ab0ee8fa60bd96cb

When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes.

]]>
<![CDATA[The Effectiveness of Injury Prevention Programs to Modify Risk Factors for Non-Contact Anterior Cruciate Ligament and Hamstring Injuries in Uninjured Team Sports Athletes: A Systematic Review]]> https://www.researchpad.co/article/5989da32ab0ee8fa60b84f27

Background

Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes.

Objective

The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes.

Data Sources

PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles.

Main Results

Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position.

Conclusions

Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors.

]]>
<![CDATA[TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA]]> https://www.researchpad.co/article/5989da8fab0ee8fa60b9f7f1

In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure.

]]>
<![CDATA[Vision in Flies: Measuring the Attention Span]]> https://www.researchpad.co/article/5989da8bab0ee8fa60b9deb3

A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s.

]]>