ResearchPad - translational-research https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Trimerization and Genotype–Phenotype Correlation of <i>COL4A5</i> Mutants in Alport Syndrome]]> https://www.researchpad.co/article/elastic_article_5915 Alport syndrome is a hereditary glomerulonephritis that results from the disruption of collagen α345(IV) heterotrimerization caused by mutation in COL4A3, COL4A4 or COL4A5 genes. Many clinical studies have elucidated the correlation between genotype and phenotype, but there is still much ambiguity and insufficiency. Here, we focused on the α345(IV) heterotrimerization of α5(IV) missense mutant as a novel factor to further understand the pathophysiology of Alport syndrome.MethodsWe selected 9 α5(IV) missense mutants with typical glycine substitutions that clinically differed in disease progression. To quantify the trimerization of each mutant, split nanoluciferase-fused α3/α5 mutants and α4 were transfected into the cells, and intracellular and secreted heterotrimer were detected by luminescence using an assay that we developed previously.ResultsTrimer formation and secretion patterns tended to be similar to the wild type in most of the mutations that did not show proteinuria at a young age. On the other hand, trimer secretion was significantly reduced in all the mutations that showed proteinuria and early onset of renal failure. One of these mutants has low ability of intracellular trimer formation, and the others had the defect of low-level secretion. In addition, the mutant that is assumed to be nonpathogenic has similar trimer formation and secretion pattern as wild-type α5(IV).ConclusionThe result of cell-based α345(IV) heterotrimer formation assay was largely correlated with clinical genotype–phenotype. These trimerization assessments provide additional phenotypic considerations and may help to distinguish between pathogenic and nonpathogenic mutations. ]]> <![CDATA[Establishment of patient-derived three-dimensional organoid culture in renal cell carcinoma]]> https://www.researchpad.co/article/N33a9f342-c8b0-4a17-a9c8-c51fde7f0f05

Purpose

Renal cell carcinoma is a heterogeneous kidney cancer, and over 403,000 cases were reported worldwide in 2018. Current methods for studying renal cell carcinoma are limited to two-dimensional (2D) culture of primary cell lines and patient-derived xenograft models. Numerous studies have suggested that 2D culture poorly represents the diversity, heterogeneity, and drug-resistance of primary tumors. The time and cost associated with patient-derived xenograft models poses a realistic barrier to their clinical utility. As a biomimetic model, patient-derived three-dimensional (3D) organoid culture can overcome these disadvantages and bridge the gap between in vitro cell culture and in vivo patient-derived xenograft models. Here, we establish a patient-derived 3D organoid culture system for clear cell renal cell carcinoma and demonstrate the biomimetic characteristics of our model with respect to both primary kidney cancer and conventional 2D culture.

Materials and Methods

Normal renal tissues and tumor tissues were collected from patients with clear cell renal cell carcinoma. The dissociated cells were cultured as conventional 2D culture and 3D organoid culture. The biomimetic characteristic of the two cultures were compared.

Results

Compared with 2D culture, the 3D organoid cultures retained the characteristic lipid-rich, clear cell morphology of clear cell renal cell carcinoma. Carbonic anhydrase 9 and vimentin were validated as biomarkers of renal cell carcinoma. Expression of the two validated biomarkers was more enhanced in 3D organoid culture.

Conclusions

Patient-derived 3D organoid culture retains the characteristics of renal cell carcinoma with respect to morphology and biomarker expression.

]]>
<![CDATA[Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA)]]> https://www.researchpad.co/article/N5ed0d32e-7b6c-48cd-a0e1-0fa8b63a322a

ABSTRACT

Parkinson disease (PD) is an age-related neurodegenerative disorder associated with misfolded SNCA/α-synuclein accumulation in brain. Impaired catabolism of SNCA potentiates formation of its toxic oligomers. LRRK2 (leucine-rich repeat kinase-2) mutations predispose to familial and sporadic PD. Mutant LRRK2 perturbs chaperone-mediated-autophagy (CMA) to degrade SNCA. We showed greater age-dependent accumulation of oligomeric SNCA in striatum and cortex of aged LRRK2R1441G knockin (KI) mice, compared to age-matched wildtype (WT) by 53% and 31%, respectively. Lysosomal clustering and accumulation of CMA-specific LAMP2A and HSPA8/HSC70 proteins were observed in aged mutant striatum along with increased GAPDH (CMA substrate) by immunohistochemistry of dorsal striatum and flow cytometry of ventral midbrain cells. Using our new reporter protein clearance assay, mutant mouse embryonic fibroblasts (MEFs) expressing either SNCA or CMA recognition ‘KFERQ’-like motif conjugated with photoactivated-PAmCherry showed slower cellular clearance compared to WT by 28% and 34%, respectively. However, such difference was not observed after the ‘KFERQ’-motif was mutated. LRRK2 mutant MEFs exhibited lower lysosomal degradation than WT indicating lysosomal dysfunction. LAMP2A-knockdown reduced total lysosomal activity and clearance of ‘KFERQ’-substrate in WT but not in mutant MEFs, indicating impaired CMA in the latter. A CMA-specific activator, AR7, induced neuronal LAMP2A transcription and lysosomal activity in MEFs. AR7 also attenuated the progressive accumulation of both intracellular and extracellular SNCA oligomers in prolonged cultures of mutant cortical neurons (DIV21), indicating that oligomer accumulation can be suppressed by CMA activation. Activation of autophagic pathways to reduce aged-related accumulation of pathogenic SNCA oligomers is a viable disease-modifying therapeutic strategy for PD.

Abbreviations: 3-MA: 3-methyladenine; AR7: 7-chloro-3-(4-methylphenyl)-2H-1,4-benzoxazine; CMA: chaperone-mediated autophagy; CQ: chloroquine; CSF: cerebrospinal fluid; DDM: n-dodecyl β-D-maltoside; DIV: days in vitro; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GWAS: genome-wide association studies; HSPA8/HSC70: heat shock protein 8; KFERQ: CMA recognition pentapeptide; KI: knockin; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LDH: lactate dehydrogenase; LRRK2: leucine-rich repeat kinase 2; MEF: mouse embryonic fibroblast; NDUFS4: NADH:ubiquinone oxidoreductase core subunit S4; NE: novel epitope; PD: Parkinson disease; RARA/RARα: retinoic acid receptor, alpha; SNCA: synuclein, alpha; TUBB3/TUJ1: tubulin, beta 3 class III; WT: wild-type

]]>
<![CDATA[A Functional Landscape of CKD Entities From Public Transcriptomic Data]]> https://www.researchpad.co/article/N3585582e-0862-4ab4-99e5-e9876e901109

Introduction

To develop effective therapies and identify novel early biomarkers for chronic kidney disease, an understanding of the molecular mechanisms orchestrating it is essential. We here set out to understand how differences in chronic kidney disease (CKD) origin are reflected in gene expression. To this end, we integrated publicly available human glomerular microarray gene expression data for 9 kidney disease entities that account for most of CKD worldwide. Our primary goal was to demonstrate the possibilities and potential on data analysis and integration to the nephrology community.

Methods

We integrated data from 5 publicly available studies and compared glomerular gene expression profiles of disease with that of controls from nontumor parts of kidney cancer nephrectomy tissues. A major challenge was the integration of the data from different sources, platforms, and conditions that we mitigated with a bespoke stringent procedure.

Results

We performed a global transcriptome-based delineation of different kidney disease entities, obtaining a transcriptomic diffusion map of their similarities and differences based on the genes that acquire a consistent differential expression between each kidney disease entity and nephrectomy tissue. We derived functional insights by inferring the activity of signaling pathways and transcription factors from the collected gene expression data and identified potential drug candidates based on expression signature matching. We validated representative findings by immunostaining in human kidney biopsies indicating, for example, that the transcription factor FOXM1 is significantly and specifically expressed in parietal epithelial cells in rapidly progressive glomerulonephritis (RPGN) whereas not expressed in control kidney tissue. Furthermore, we found drug candidates by matching the signature on expression of drugs to that of the CKD entities, in particular, the Food and Drug Administration–approved drug nilotinib.

Conclusion

These results provide a foundation to comprehend the specific molecular mechanisms underlying different kidney disease entities that can pave the way to identify biomarkers and potential therapeutic targets. To facilitate further use, we provide our results as a free interactive Web application: https://saezlab.shinyapps.io/ckd_landscape/. However, because of the limitations of the data and the difficulties in its integration, any specific result should be considered with caution. Indeed, we consider this study rather an illustration of the value of functional genomics and integration of existing data.

]]>
<![CDATA[Impaired Delivery of Cholesterol Effluxed From Macrophages to Hepatocytes by Serum From CKD Patients May Underlie Increased Cardiovascular Disease Risk]]> https://www.researchpad.co/article/Ndcd82260-6bb9-4e7c-a031-58dc7b59b3cd

Introduction

Although chronic kidney disease (CKD) is associated with increased risk for coronary artery disease (CAD), the underlying mechanisms are not completely defined. In the present study, we tested the hypothesis that flux of cholesterol from macrophage foam cells to liver is impaired in subjects with CKD.

Methods

Consecutive healthy patients, patients with at least 1 CAD risk factor, patients with established CAD, and patients with CKD stages G3 to G5 (n ≥ 15/group) were recruited prospectively. The ability of total patient serum without any modifications to (i) facilitate efflux of cholesterol from human THP1-macrophage foam cells under physiological conditions (cholesterol efflux capacity [CEC]) and (ii) to deliver this effluxed cholesterol to primary hepatocytes with physiological expression of high-density lipoprotein (HDL) receptor SR-BI (capacity to deliver cholesterol to hepatocytes [CDCH]) was evaluated.

Results

Although healthy patients, patients with at least 1 CAD risk factor, and patients with established CAD all showed similar CEC, patients with CKD showed significantly higher CEC. CDCH was significantly lower in all groups compared with the healthy patients; however, when corrected for higher CEC, CDCH in patients with CKD was significantly lower than in patients with CAD. CDCH correlated with age, body mass index, metabolic parameters, inflammatory markers, and kidney function markers (estimated glomerular filtration rate [eGFR], serum creatinine, and serum cystatin C).

Conclusions

These results suggest that aberrations in delivery of cholesterol effluxed from macrophage foam cells to liver for final elimination or the last step of reverse cholesterol transport, may underlie the increased risk of CAD in patients with CKD.

]]>
<![CDATA[Frequency of mutations in BRAF, NRAS, and KIT in different populations and histological subtypes of melanoma: a systemic review]]> https://www.researchpad.co/article/Nd3da96f3-ebc9-4a8e-987f-c24870b6e063

Supplemental Digital Content is available in the text.

]]>
<![CDATA[Soluble fms-Like Tyrosine Kinase 1 Localization in Renal Biopsies of CKD]]> https://www.researchpad.co/article/N99d4cacd-3ac8-426d-b7c5-a71d88c422c5

Introduction

Soluble fms-like tyrosine kinase 1 (sFLT1) is a splice variant of the vascular endothelial growth factor (VEGF) receptor lacking the transmembrane and cytoplasmic domains and acts as a powerful antagonist of VEGF signaling. Plasma sFLT1 levels are higher in patients with chronic kidney disease (CKD) and correlate with renal dysfunction. The source of plasma sFLT1 in CKD is unclear.

Methods

Fifty-two renal biopsies were studied for sFLT1 expression using immunohistochemistry and evaluated on a 0–4 grading scale of positive cells within inflammatory infiltrates. These included drug-induced interstitial nephritis (6); allografts (12), with polyomavirus nephritis (3); diabetes mellitus (10); lupus glomerulonephritis (6); pauci-immune vasculitis (7); IgA nephropathy (6); and miscellaneous CKD (5).

Results

Forty-seven biopsies had inflammatory infiltrates of which 37 had sFLT1-positive cells: of these biopsies, 3 were grade 4, i.e., had cells that constituted more than 50% of the inflammatory infiltrate, 9 were grade 3 (25%–50%), 5 were grade 2 (10%–25%), 3 were grade 1 (10%), and 17 were grade 0.5 (<10%). There was a robust correlation (r2 = 0.89) between degree of inflammation and sFLT1-positive cells. CD68/sFLT1 co-immunostaining studies indicated that sFLT1-positive cells were histiocytes. The surrounding capillary network was reduced.

Conclusion

sFLT1-positive histiocytes are generally part of the inflammatory infiltrates noted in CKD and are particularly abundant in forms of interstitial nephritis. Their presence promotes an anti-angiogenic state locally in the tubulointerstitium that could inhibit capillary repair, contribute to peritubular capillary loss, and enhance fibrosis in CKD.

]]>
<![CDATA[Gains of Chromosome 1p and 15q are Associated with Poor Survival After Cytoreductive Surgery and HIPEC for Treating Colorectal Peritoneal Metastases]]> https://www.researchpad.co/article/N33dc30a9-a014-45a6-950a-ab68047fcf31

Purpose

Genetic alterations in colorectal peritoneal metastases (PM) are largely unknown. This study was designed to analyze whole-genome copy number alterations (CNA) in colorectal PM and to identify alterations associated with prognosis after cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC).

Methods

All patients with PM, originating from a colorectal adenocarcinoma, who were treated with CRS and HIPEC in Uppsala Sweden, between 2004 and 2015, were included (n = 114). DNA derived from formalin-fixed paraffin-embedded (FFPE) specimens were analyzed for CNA using molecular inversion probe arrays.

Results

There were extensive but varying degrees of CNA, ranging from minimal CNA to total aneuploidy. In particular, gain of parts of chromosome 1p and major parts of 15q were associated with poor survival. A combination of gains of 1p and 15q was associated with poor survival, also after adjustment for differences in peritoneal cancer index and completeness of cytoreduction score [hazard ratio (HR) 5.96; 95% confidence interval (CI) 2.19–16.18]. These patients had a mean copy number (CN) of 3.19 compared with 2.24 in patients without gains. Complete CN analysis was performed in 53 patients. Analysis was unsuccessful for the remaining patients due to insufficient amounts of DNA and signals caused by interstitial components and normal cells. There was no difference in survival between patients with successful and unsuccessful CN analysis.

Conclusions

This study shows that gains of parts of chromosome 1p and of major parts of chromosome 15q were significantly associated with poor survival after CRS and HIPEC, which could represent future prognostic biomarkers.

Electronic supplementary material

The online version of this article (10.1245/s10434-019-07923-6) contains supplementary material, which is available to authorized users.

]]>
<![CDATA[Bone Marrow–Harvesting Technique Influences Functional Heterogeneity of Mesenchymal Stem/Stromal Cells and Cartilage Regeneration]]> https://www.researchpad.co/article/5c2a774fd5eed0c484225c03

Background:

Connective tissue progenitors (CTPs) from native bone marrow (BM) or their culture-expanded progeny, often referred to as mesenchymal stem/stromal cells, represents a promising strategy for treatment of cartilage injuries. But the cartilage regeneration capacity of these cells remains unpredictable because of cell heterogeneity.

Hypothesis:

The harvest technique of BM may highly influence stem cell heterogeneity and, thus, cartilage formation because these cells have distinct spatial localization within BM from the same bone.

Study Design:

Controlled laboratory study.

Methods:

CTPs obtained from the femur of patients undergoing total hip replacement by 2 harvest techniques—BM aspiration and BM collection—after bone rasping were immunophenotyped by flow cytometry and evaluated for chondrogenic ability. The spatial localization of different CTP subsets in BM was verified by immunohistochemistry.

Results:

Cells from the BM after rasping were significantly more chondrogenic than the donor-matched aspirate, whereas no notable difference in their osteogenic or adipogenic potential was observed. The authors then assessed whether distinct immunophenotypically defined CTP subsets were responsible for the different chondrogenic capacity. Cells directly isolated from BM after rasping contained a higher percentage (mean, 7.2-fold) of CD45–CD271+CD56+ CTPs as compared with BM aspirates. The presence of this subset in the harvested BM strongly correlated with chondrogenic ability, showing that CD271+CD56+ cells are enriched in chondroprogenitors. Furthermore, evaluation of these CTP subsets in BM revealed that CD271+CD56+ cells were localized in the bone-lining regions whereas CD271+CD56– cells were found in the perivascular regions. Since the iliac crest remains a frequent site of BM harvest for musculoskeletal regeneration, the authors also compared the spatial distribution of these subsets in trabeculae of femoral head and iliac crest and found CD271+CD56+ bone-lining cells in both tissues.

Conclusion:

Chondrogenically distinct CTP subsets have distinct spatial localization in BM; hence, the harvest technique of BM determines the efficiency of cartilage formation.

Clinical Relevance:

The harvest technique of BM may be of major importance in determining the clinical success of BM mesenchymal stem/stromal cells in cartilage repair.

]]>
<![CDATA[A Novel Arthroscopic Technique for Intraoperative Mobilization of Synovial Mesenchymal Stem Cells]]> https://www.researchpad.co/article/5c2a774ad5eed0c484225a43

Background:

Mesenchymal stem cells (MSCs) have emerged as a promising candidate for tissue regeneration and restoration of intra-articular structures such as cartilage, ligaments, and menisci. However, the routine use of MSCs is limited in part by their low numbers and the need for methods and procedures outside of the joint or surgical field.

Purpose:

To demonstrate feasibility of a technique in which minimally manipulated synovial MSCs can be mobilized during knee arthroscopy, thereby showing proof of concept for the future evaluation and clinical use of native joint resident MSCs in single-stage joint repair strategies.

Study Design:

Descriptive laboratory study.

Methods:

Patients (n = 15) undergoing knee arthroscopy who were free from synovitis or active inflammation were selected. Three samples of irrigation fluid were collected from each patient at inception of the procedure, after an initial inspection of the joint, and after agitation of the synovium. MSC numbers were evaluated by colony forming unit–fibroblastic assay. The phenotype of synovial fluid resident and synovial-mobilized MSCs was determined by flow cytometry, and their functionality was determined by trilineage differentiation. Adhesion of culture-expanded mobilized MSCs to fibrin scaffolds was also evaluated to ascertain whether mobilized MSCs might concentrate at sites of bleeding.

Results:

Normal irrigation during arthroscopy depleted resident synovial fluid MSCs (4-fold decrease, n = 15). Numbers of MSCs mobilized through use of a purpose-made device were significantly higher (105-fold) than those mobilized through use of a cytology brush (median of 5763 and 54 colonies, respectively; P = .001; n = 15). The mobilized cellular fraction contained viable MSCs with proliferative potential and trilineage differentiation capacity for bone, cartilage, and fat lineages, and cultured daughter cells exhibited the standard MSC phenotype. Following culture, mobilized synovial MSCs also adhered to various fibrin scaffolds in vitro. The technique was simple and convenient to use and was not associated with any complications.

Conclusion:

Numbers of functional MSCs can be greatly increased during arthroscopy through use of this technique to mobilize cells from the synovium.

Clinical Relevance:

This study highlights a novel, single-stage technique to increase joint-specific, synovial-derived MSCs and thereby increase the repair potential of the joint. This technique can be undertaken during many arthroscopic procedures, and it supports the principle of integrating mobilized MSCs into microfracture sites and sites of bleeding or targeted repair through use of fibrin-based and other scaffolds.

]]>
<![CDATA[Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine-like amino acid palythine]]> https://www.researchpad.co/article/5c0607c2d5eed0c484aee560

Summary

Background

Solar ultraviolet radiation (UVR) induces molecular and genetic changes in the skin, which result in skin cancer, photoageing and photosensitivity disorders. The use of sunscreens is advocated to prevent such photodamage; however, most formulations contain organic and inorganic UVR filters that are nonbiodegradable and can damage fragile marine ecosystems. Mycosporine‐like amino acids (MAAs) are natural UVR‐absorbing compounds that have evolved in marine species for protection against chronic UVR exposure in shallow‐water habitats.

Objectives

To determine if palythine, a photostable model MAA, could offer protection against a range of UVR‐induced damage biomarkers that are important in skin cancer and photoageing.

Methods

HaCaT human keratinocytes were used to assess the photoprotective potential of palythine using a number of end points including cell viability, DNA damage (nonspecific, cyclobutane pyrimidine dimers and oxidatively generated damage), gene expression changes (linked to inflammation, photoageing and oxidative stress) and oxidative stress. The antioxidant mechanism was investigated using chemical quenching and Nrf2 pathway activation assays.

Results

Palythine offered statistically significant protection (P < 0·005) against all end points tested even at extremely low concentrations (0·3% w/v). Additionally, palythine was found to be a potent antioxidant, reducing oxidatively generated stress, even when added after exposure.

Conclusions

Palythine is an extremely effective multifunctional photoprotective molecule in vitro that has potential to be developed as a natural and biocompatible alternative to currently approved UVR filters.

]]>
<![CDATA[Down-regulation of transient receptor potential melastatin member 7 prevents migration and invasion of renal cell carcinoma cells via inactivation of the Src and Akt pathway]]> https://www.researchpad.co/article/5b5b9940463d7e203834eeb9

Purpose

Transient receptor potential melastatin member 7 (TRPM7), an ion channel and serine/threonine protein kinase, has been linked with distinct human malignancies. However, the role of TRPM7 in renal cell carcinoma (RCC) has not been investigated. The aim of this study is to determine whether TRPM7 regulates the migration and invasion of RCC cells. Its relationship with signal transduction pathways was also studied.

Materials and Methods

The human RCC cell lines ACHN and SN12C were chosen for this study. The molecular mechanisms of TRPM7 action were studied using Western blot analysis and small interfering RNA (siRNA)-based knockdown. The effect of TRPM7 knockdown on RCC cells was measured by using Transwell invasion and wound healing migration assays.

Results

siRNA-induced silencing of TRPM7 notably decreased the migration and invasion of ACHN and SN12C RCC cells. The phosphorylation levels of Src in both cells were obviously reduced after TRPM7 silencing compared with that of the control ACHN and SN12C cells. Furthermore, the phosphorylation levels of Akt were greatly decreased in ACHN cells after siRNA-induced knockdown of TRPM7. Additionally, the treatment of cells with Src and Akt inhibitors clearly limited the migration and invasion of RCC cells.

Conclusions

Our data show that TRPM7 regulated ACHN and SN12C RCC cell invasion via the Src/Akt signaling pathway. Therefore, targeting the Src/Akt signaling pathway and/or the expression or function of TRPM7 could be a potential beneficial treatment for patients with RCC.

]]>
<![CDATA[Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model]]> https://www.researchpad.co/article/5b364747463d7e52c314dc90

Objective

To investigate whether the effects of nerve growth factor (NGF) inhibition with tanezumab on rats with medial meniscal tear (MMT) effectively model rapidly progressive osteoarthritis (RPOA) observed in clinical trials.

Methods

Male Lewis rats underwent MMT surgery and were treated weekly with tanezumab (0.1, 1 or 10 mg/kg), isotype control or vehicle for 7, 14 or 28 days. Gait deficiency was measured to assess weight-bearing on the operated limb. Joint damage was assessed via histopathology. A second arm, delayed onset of treatment (starting 3–8 weeks after MMT surgery) was used to control for analgesia early in the disease process. A third arm, mid-tibial amputation, evaluated the dependency of the model on weight-bearing.

Results

Gait deficiency in untreated rats was present 3–7 days after MMT surgery, with a return to normal weight-bearing by days 14–28. Prophylactic treatment with tanezumab prevented gait deficiency and resulted in more severe cartilage damage. When onset of treatment with tanezumab was delayed to 3–8 weeks after MMT surgery, there was no increase in cartilage damage. Mid-tibial amputation completely prevented cartilage damage in untreated MMT rats.

Conclusions

These data suggest that analgesia due to NGF inhibition during the acute injury phase is responsible for increased voluntary weight-bearing and subsequent cartilage damage in the rat MMT model. This model failed to replicate the hypotrophic bone response observed in tanezumab-treated patients with RPOA.

]]>
<![CDATA[The Effects of Platelet‐Derived Growth Factor‐BB on Human Dental Pulp Stem Cells Mediated Dentin‐Pulp Complex Regeneration]]> https://www.researchpad.co/article/5b45d61b463d7e54c1d63b08

Abstract

Dentin‐pulp complex regeneration is a promising alternative treatment for the irreversible pulpitis caused by tooth trauma or dental caries. This process mainly relies on the recruitment of endogenous or the transplanted dental pulp stem cells (DPSCs) to guide dentin‐pulp tissue formation. Platelet‐derived growth factor (PDGF), a well‐known potent mitogenic, angiogenic, and chemoattractive agent, has been widely used in tissue regeneration. However, the mechanisms underlying the therapeutic effects of PDGF on dentin‐pulp complex regeneration are still unclear. In this study, we tested the effect of PDGF‐BB on dentin‐pulp tissue regeneration by establishing PDGF‐BB gene‐modified human dental pulp stem cells (hDPSCs) using a lentivirus. Our results showed that PDGF‐BB can significantly enhance hDPSC proliferation and odontoblastic differentiation. Furthermore, PDGF‐BB and vascular endothelial growth factor (VEGF) secreted by hDPSCs enhanced angiogenesis. The chemoattractive effect of PDGF‐BB on hDPSCs was also confirmed using a Transwell chemotactic migration model. We further determined that PDGF‐BB facilitates hDPSCs migration via the activation of the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway. In vivo, CM‐DiI‐labeled hDPSCs were injected subcutaneously into mice, and our results showed that more labeled cells were recruited to the sites implanted with calcium phosphate cement scaffolds containing PDGF‐BB gene‐modified hDPSCs. Finally, the tissue‐engineered complexes were implanted subcutaneously in mice for 12 weeks, the Lenti‐PDGF group generated more dentin‐like mineralized tissue which showed positive staining for the DSPP protein, similar to tooth dentin tissue, and was surrounded by highly vascularized dental pulp‐like connective tissue. Taken together, our data demonstrated that the PDGF‐BB possesses a powerful function in prompting stem cell‐based dentin‐pulp tissue regeneration. Stem Cells Translational Medicine 2017;6:2126–2134

]]>
<![CDATA[Public Support in the U.S. for Human‐Animal Chimera Research: Results of a Representative Cross‐Sectional Survey of 1,058 Adults]]> https://www.researchpad.co/article/5b3dc844463d7e3c1b1657b1 ]]> <![CDATA[Exosomes Derived from Akt‐Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet‐Derived Growth Factor D]]> https://www.researchpad.co/article/5b3dc889463d7e3c1b1657b2

Abstract

We have previously demonstrated the cardioprotective effects of exosomes derived from mesenchymal stem cells (MSCs). It is well known that the activation of Akt is involved in stem cell‐induced cardioprotection. In the present study, we investigated whether exosomes released from Akt‐overexpressing MSCs showed a beneficial effect on cardioprotection and angiogenesis. MSCs were collected from human umbilical cord (hucMSCs), and Akt was transfected into hucMSCs (Akt‐hucMSCs) by using an adenovirus transfection system. Exosomes were isolated from control hucMSCs (Exo) and Akt‐hucMSCs (Akt‐Exo). An acute myocardial infarction model was created by ligation of the left anterior decedent coronary artery (LAD) in rats. Various source exosomes (400 µg of protein) were infused via the tail vein immediately after LAD ligation. The cardiac function was evaluated by using echocardiography after different treatments for 1 and 5 weeks, respectively. Endothelial cell proliferation, migration, and tube‐like structure formation, as well as chick allantoic membrane assay, were used to evaluate the angiogenetic effects of Akt‐Exo. The results indicated that cardiac function was significantly improved in the animals treated with Akt‐Exo. In addition, Akt‐Exo significantly accelerated endothelial cell proliferation and migration, tube‐like structure formation in vitro, and blood vessel formation in vivo. The expression of platelet‐derived growth factor D (PDGF‐D) was significantly upregulated in Akt‐Exo. However, the angiogenesis was abrogated in endothelial cells treated with the exosomes obtained from MSCs transfected with PDGF‐D‐siRNA. Our studies suggest that exosomes obtained from Akt‐modified hucMSCs are more effective in myocardial infarction therapy through promoting angiogenesis. PDGF‐D plays an important role in Akt‐Exo‐mediated angiogenesis. Stem Cells Translational Medicine 2017;6:51–59

]]>
<![CDATA[T cell subsets: an immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals]]> https://www.researchpad.co/article/5bd037f740307c57db8016d3

Objectives

Anticitrullinated protein antibody (ACPA)+ individuals with non-specific musculoskeletal symptoms are at risk of inflammatory arthritis (IA). This study aims to demonstrate the predictive value of T cell subset quantification for progression towards IA and compare it with previously identified clinical predictors of progression.

Methods

103 ACPA+ individuals without clinical synovitis were observed 3-monthly for 12 months and then as clinically indicated. The end point was the development of IA. Naïve, regulatory T cells (Treg) and inflammation related cells (IRCs) were quantified by flow cytometry. Areas under the ROC curve (AUC) were calculated. Adjusted logistic regressions and Cox proportional hazards models for time to progression to IA were constructed.

Results

Compared with healthy controls (age adjusted where appropriate), ACPA+ individuals demonstrated reduced naïve (22.1% of subjects) and Treg (35.8%) frequencies and elevated IRC (29.5%). Of the 103 subjects, 48(46.6%) progressed. Individually, T cell subsets were weakly predictive (AUC between 0.63 and 0.66), although the presence of 2 T cell abnormalities had high specificity. Three models were compared: model-1 used T cell subsets only, model-2 used previously published clinical parameters, model-3 combined clinical data and T cell data. Model-3 performed the best (AUC 0.79 (95% CI 0.70 to 0.89)) compared with model-1 (0.75 (0.65 to 0.86)) and particularly with model-2 (0.62 (0.54 to 0.76)) demonstrating the added value of T cell subsets. Time to progression differed significantly between high-risk, moderate-risk and low-risk groups from model-3 (p=0.001, median 15.4 months, 25.8 months and 63.4 months, respectively).

Conclusions

T cell subset dysregulation in ACPA+ individuals predates the onset of IA, predicts the risk and faster progression to IA, with added value over previously published clinical predictors of progression.

]]>
<![CDATA[Stress-related disorders, pituitary adenylate cyclase—activating peptide (PACAP)ergic system, and sex differences]]> https://www.researchpad.co/article/5b365e55463d7e5448d9f6a0

Trauma-related disorders, such as posttraumatic stress disorder (PTSD) are remarkably common and debilitating, and are often characterized by dysregulated threat responses. Across numerous epidemiological studies, females have been found to have an approximately twofold increased risk for PTSD and other stress-related disorders. Understanding the biological mechanisms of this differential risk is of critical importance. Recent data suggest that the pituitary adenylate cyclase-activating polypeptide (PACAP) pathway is a critical regulator of the stress response across species. Moreover, increasing evidence suggests that this pathway is regulated by both stress and estrogen modulation and may provide an important window into understanding mechanisms of sex differences in the stress response. We have recently shown that PACAP and its receptor (PAC1R) are critical mediators of abnormal processes after psychological trauma. Notably, in heavily traumatized human subjects, there appears to be a robust sex-specific association of PACAP blood levels and PAC1R gene variants with fear physiology, PTSD diagnosis, and symptoms, specifically in females. The sex-specific association occurs within a single-nucleotide polymorphism (rs2267735) that resides in a putative estrogen response element involved in PAC1R gene regulation. Complementing these human data, the PAC1R messenger RNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1R pathway are regulated by estrogen and are involved in abnormal fear responses underlying PTSD.

]]>
<![CDATA[Concise Review: Mesenchymal Stem Cell Therapy for Pediatric Disease: Perspectives on Success and Potential Improvements]]> https://www.researchpad.co/article/5b3dc8cf463d7e3c1b1657b3

Abstract

Mesenchymal stem cells (MSCs) represent a potentially revolutionary therapy for a wide variety of pediatric diseases, but the optimal cell‐based therapeutics for such diversity have not yet been specified. The published clinical trials for pediatric pulmonary, cardiac, orthopedic, endocrine, neurologic, and hematologic diseases provide evidence that MSCs are indeed efficacious, but the significant heterogeneity in therapeutic approaches between studies raises new questions. The purpose of this review is to stimulate new preclinical and clinical trials to investigate these factors. First, we discuss recent clinical trials for pediatric diseases studying MSCs obtained from bone marrow, umbilical cord and umbilical cord blood, placenta, amniotic fluid, and adipose tissue. We then identify factors, some unique to pediatrics, which must be examined to optimize therapeutic efficacy, including route of administration, dose, timing of administration, the role of ex vivo differentiation, cell culture techniques, donor factors, host factors, and the immunologic implications of allogeneic therapy. Finally, we discuss some of the practicalities of bringing cell‐based therapy into the clinic, including regulatory and manufacturing considerations. The aim of this review is to inform future studies seeking to maximize therapeutic efficacy for each disease and for each patient. Stem Cells Translational Medicine 2017;6:539–565

]]>
<![CDATA[Circulating cell-free plasma tumour DNA shows a higher incidence of EGFR mutations in patients with extrathoracic disease progression]]> https://www.researchpad.co/article/5bf7402dd5eed0c484e00116

Background

Non-invasive monitoring of epidermal growth factor receptor (EGFR) mutations conferring sensitivity and resistance to tyrosine kinase inhibitors (TKIs) is vital for efficient therapy of lung adenocarcinoma (LADC). Although plasma circulating cell-free tumour DNA (ctDNA) is detectable at an early stage, the size of the tumour does not strongly correlate with concentration of whole cell-free DNA (cfDNA), including normal leucocyte DNA. We sought to examine the clinical features of patients with LADC whose cfDNA examination held clues for analysis of cancer genomics.

Methods

Forty-four plasma samples from 37 patients with LADC receiving EGFR-TKI therapy, including 20 who developed resistance, were prospectively subjected to droplet digital PCR-cfDNA analysis to detect EGFR mutations and analysed according to clinical features.

Results

cfDNA samples from 28 (64%) of the 44 samples were positive for TKI-sensitive mutations. Samples from 19 (95%) of the 20 EGFR-TKI-resistant patients were positive for TKI-sensitive mutations. In 24 patients without TKI resistance, 7 (54%) of 13 patients with regional lymph node metastases, 4 (67%) of 6 patients with advanced T stage (T3 or T4) and 8 (57%) of 14 patients with extrathoracic disease progression were also positive for TKI-sensitive mutations. cfDNA analysis from patients with acquired TKI-resistance disease or extrathoracic disease progression correlated with a high detection rate of TKIsensitive mutations (acquired resistance: risk ratio=2.53, 95% CI 1.50 to 4.29; extrathoracic disease progression: risk ratio=5.71, 95% CI 0.84 to 36.74).

Conclusions

cfDNA in patients with EGFR-TKI-resistance or extrathoracic disease progression may be useful for analysis of cancer genomics.

Trial registration number

UMIN 000017581.

]]>