ResearchPad - trees https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Effect of forest management on tree diversity in temperate ecosystem forests in northern Mexico]]> https://www.researchpad.co/article/elastic_article_15742 An important challenge for silvicultural practices is the conservation of tree diversity while fulfilling the traditional objectives of forest management, most notably timber harvesting. The purpose of this study was to compare the tree diversity before and after the application of silvicultural treatments in a temperate forest in northern Mexico. Fifteen experimental plots, each measuring 2500 m2, were established to evaluate the immediate effect of four silvicultural treatments. These treatments were identified by their levels of management: intensive (clearcut, removal 100%), semi-intensive (removal of 59–61% of basal area), conservative (removal of 29–31% of basal area), and a control group. New forest guidelines, in contrast to conventional approaches, were applied to the semi-intensive and conservative treatments based on health and diversity conditions. Basal area, canopy cover, tree and total volume were measured in each plot. The Importance Value Index, alpha diversity, and evenness were estimated before and after treatments. Eighteen species belonging to five genera and five families were found in the study area. The species with the highest ecological values were Pinus durangensis, P. teocote, Quercus sideroxyla, and Quercus convallata with IVI numbers between 13.6 and 24.5%. Alpha diversity was intermediate (Margalef: 2.9 to 3.8), while dominance and evenness were above average compared to other studies (Simpson: 0.69 to 0.77; Shannon-Wiener: 1.44 to 1.6; Pielou: 0.76 to 0.85). The species evenness index in the conservative treatment was high (Sorensen, Jaccard, quantitative Sorensen and Morisita-Horn; 88 to 99%), although abundance decreased. Overall, there were no significant differences in IVI values and diversity indicators before and after treatments, with the exception of the clearcut treatment. When associating the diversity indices with stand variables, only the Pielou’s evenness index showed a significant relationship between them. We concluded that both the conservative and semi-intensive treatments did not generate significant changes in tree diversity, but the former had slightly higher alpha diversity indices. These results can provide a better insight on silvicultural practices and their effects on species composition.

]]>
<![CDATA[Unravelling the mystery of “Madagascar copal”: Age, origin and preservation of a Recent resin]]> https://www.researchpad.co/article/elastic_article_15728 The loss of biodiversity during the Anthropocene is a constant topic of discussion, especially in the top biodiversity hotspots, such as Madagascar. In this regard, the study of preserved organisms through time, like those included in "Madagascar copal", is of relevance. “Madagascar copal" originated from the leguminous tree Hymenaea verrucosa, which produced and produces resin abundantly. In the last 20 years, interest has focused on the scientific study of its biological inclusions, mainly arthropods, described in dozens of publications. The age and origin of the deposits of "Madagascar copal" have not yet been resolved. Our objectives are to determine its age and geographical origin, and thus increase its scientific value as a source of biological/palaeobiological information. Although Hymenaea was established in Madagascar during the Miocene, we did not find geological deposits of copal or amber in the island. It is plausible that the evolution of those deposits was negatively conditioned by the type of soil, by the climate, and by the development of soil/litter microorganisms, which inhibit preservation of the resin pieces in the litter and subsoil over 300 years. Our results indicate that "Madagascar copal" is a Recent resin, up to a few hundred years old, that originated from Hymenaea trees growing in the lowland coastal forests, one of the most endangered ecosystems in the world. The included and preserved biota is representative of that ecosystem today and during historical times. Inclusions in this Recent resin do not have the palaeontological significance that has been mistakenly attributed to them, but they do have relevant implications for studies regarding Anthropocene biodiversity loss in this hottest hotspot.

]]>
<![CDATA[iterb-PPse: Identification of transcriptional terminators in bacterial by incorporating nucleotide properties into PseKNC]]> https://www.researchpad.co/article/elastic_article_14750 Terminator is a DNA sequence that gives the RNA polymerase the transcriptional termination signal. Identifying terminators correctly can optimize the genome annotation, more importantly, it has considerable application value in disease diagnosis and therapies. However, accurate prediction methods are deficient and in urgent need. Therefore, we proposed a prediction method “iterb-PPse” for terminators by incorporating 47 nucleotide properties into PseKNC-Ⅰ and PseKNC-Ⅱ and utilizing Extreme Gradient Boosting to predict terminators based on Escherichia coli and Bacillus subtilis. Combing with the preceding methods, we employed three new feature extraction methods K-pwm, Base-content, Nucleotidepro to formulate raw samples. The two-step method was applied to select features. When identifying terminators based on optimized features, we compared five single models as well as 16 ensemble models. As a result, the accuracy of our method on benchmark dataset achieved 99.88%, higher than the existing state-of-the-art predictor iTerm-PseKNC in 100 times five-fold cross-validation test. Its prediction accuracy for two independent datasets reached 94.24% and 99.45% respectively. For the convenience of users, we developed a software on the basis of “iterb-PPse” with the same name. The open software and source code of “iterb-PPse” are available at https://github.com/Sarahyouzi/iterb-PPse.

]]>
<![CDATA[<i>Xylella fastidiosa</i> subsp. <i>pauca</i> and olive produced lipids moderate the switch adhesive versus non-adhesive state and <i>viceversa</i>]]> https://www.researchpad.co/article/elastic_article_14717 Global trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. In last decades, X. fastidiosa was detected in several European countries. X. fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of hosts. X. fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on mixture of cis 2-enoic fatty acids—diffusible signalling factors (DSF) that promote stickiness and biofilm. The lipidome profile of Olea europaea L. (cv. Ogliarola salentina) samples, collected in groves located in infected zones and uninfected zones was performed. The untargeted analysis of the lipid profiles of Olive Quick Decline Syndrome (OQDS) positive (+) and negative (-) plants showed a clustering of OQDS+ plants apart from OQDS-. The targeted lipids profile of plants OQDS+ and OQDS- identified a shortlist of 10 lipids that increase their amount in OQDS+ and X. fastidiosa positive olive trees. These lipid entities, provided to X. fastidiosa subsp. pauca pure culture, impact on the dual phase, e.g. planktonic ↔ biofilm. This study provides novel insights on OQDS lipid hallmarks and on molecules that might modulate biofilm phase in X. fastidiosa subsp. pauca.

]]>
<![CDATA[Development and evaluation of habitat suitability models for nesting white-headed woodpecker (<i>Dryobates albolarvatus</i>) in burned forest]]> https://www.researchpad.co/article/elastic_article_14713 Salvage logging in burned forests can negatively affect habitat for white-headed woodpeckers (Dryobates albolarvatus), a species of conservation concern, but also meets socioeconomic demands for timber and human safety. Habitat suitability index (HSI) models can inform forest management activities to help meet habitat conservation objectives. Informing post-fire forest management, however, involves model application at new locations as wildfires occur, requiring evaluation of predictive performance across locations. We developed HSI models for white-headed woodpeckers using nest sites from two burned-forest locations in Oregon, the Toolbox (2002) and Canyon Creek (2015) fires. We measured predictive performance by developing one model at each of the two locations and quantifying discrimination of nest from reference sites at two other wildfire locations where the model had not been developed (either Toolbox or Canyon Creek, and the Barry Point Fire [2011]). We developed and evaluated Maxent models based on remotely sensed environmental metrics to support habitat mapping, and weighted logistic regression (WLR) models that combined remotely sensed and field-collected metrics to inform management prescriptions. Both Maxent and WLR models developed either at Canyon Creek or Toolbox performed adequately to inform management when applied at the alternate Toolbox or Canyon Creek location, respectively (area under the receiver-operating-characteristic curve [AUC] range = 0.61–0.72) but poorly when applied at Barry Point (AUC = 0.53–0.57). The final HSI models fitted to Toolbox and Canyon Creek data quantified suitable nesting habitat as severely burned or open sites adjacent to lower severity and closed canopy sites, where foraging presumably occurs. We suggest these models are applicable at locations similar to development locations but not at locations resembling Barry Point, which were characterized by more (pre-fire) canopy openings, larger diameter trees, less ponderosa pine (Pinus ponderosa), and more juniper (Juniperus occidentalis). Considering our results, we recommend caution when applying HSI models developed at individual wildfire locations to inform post-fire management at new locations without first evaluating predictive performance.

]]>
<![CDATA[Local and landscape-level diversity effects on forest functioning]]> https://www.researchpad.co/article/elastic_article_14584 Research of the past decades has shown that biodiversity is a fundamental driver of ecosystem functioning. However, most of this biodiversity–ecosystem functioning (BEF) research focused on experimental communities on small areas where environmental context was held constant. Whether the established BEF relationships also apply to natural or managed ecosystems that are embedded in variable landscape contexts remains unclear. In this study, we therefore investigated biodiversity effects on ecosystem functions in 36 forest stands that were located across a vast range of environmental conditions in managed landscapes of Central Europe (Switzerland). Specifically, we approximated forest productivity by leaf area index and forest phenology by growing-season length and tested effects of tree species richness and land-cover richness on these variables. We then examined the correlation and the confounding of these local and landscape-level diversity effects with environmental context variables related to forest stand structure (number of trees), landscape structure (land-cover edge density), climate (annual precipitation) and topography (mean altitude). We found that of all tested variables tree species richness was among the most important determinants of forest leaf area index and growing-season length. The positive effects of tree species richness on these two ecosystem variables were remarkably consistent across the different environmental conditions we investigated and we found little evidence of a context-dependent change in these biodiversity effects. Land-cover richness was not directly related to local forest functions but could nevertheless play a role via a positive effect on tree species richness.

]]>
<![CDATA[ECG-based prediction algorithm for imminent malignant ventricular arrhythmias using decision tree]]> https://www.researchpad.co/article/elastic_article_14548 Spontaneous prediction of malignant ventricular arrhythmia (MVA) is useful to avoid delay in rescue operations. Recently, researchers have developed several algorithms to predict MVA using various features derived from electrocardiogram (ECG). However, there are several unresolved issues regarding MVA prediction such as the effect of number of ECG features on a prediction remaining unclear, possibility that an alert for occurring MVA may arrive very late and uncertainty in the performance of the algorithm predicting MVA minutes before onset. To overcome the aforementioned problems, this research conducts an in-depth study on the number and types of ECG features that are implemented in a decision tree classifier. In addition, this research also investigates an algorithm’s execution time before the occurrence of MVA to minimize delays in warnings for MVA. Lastly, this research aims to study both the sensitivity and specificity of an algorithm to reveal the performance of MVA prediction algorithms from time to time. To strengthen the results of analysis, several classifiers such as support vector machine and naive Bayes are also examined for the purpose of comparison study. There are three phases required to achieve the objectives. The first phase is literature review on existing relevant studies. The second phase deals with design and development of four modules for predicting MVA. Rigorous experiments are performed in the feature selection and classification modules. The results show that eight ECG features with decision tree classifier achieved good prediction performance in terms of execution time and sensitivity. In addition, the results show that the highest percentage for sensitivity and specificity is 95% and 90% respectively, in the fourth 5-minute interval (15.1 minutes–20 minutes) that preceded the onset of an arrhythmia event. Such results imply that the fourth 5-minute interval would be the best time to perform prediction.

]]>
<![CDATA[Distribution pattern of Tugai forests species diversity and their relationship to environmental factors in an arid area of China]]> https://www.researchpad.co/article/elastic_article_14501 Ecological restoration of degraded riparian Tugai forests is a key driver to combat desertification in arid regions. Previous studies have focused mainly on changes in groundwater as the underlying mechanisms of Tugai forest’s decline. We evaluated species composition and diversity of Tugai forest and their relationship to groundwater, soil salinity, and soil nutrient. Using 73 quadrats (100 m × 100 m) from 13 transects located perpendicularly to river in the upper reaches of the Tarim River. Eighteen plant species belonging to sixteen genera and eight families were recorded, and the dominant species included Populus euphratica, Phragmites communis, and Tamarix ramosissima. Three P. euphratica stand ages were detected: young stand, mature stand, and old stand. There were significant differences in species diversity, groundwater depth, groundwater salinity, distance from the quadrat to the river channel, soil moisture content, pH, electrical conductivity, total salt, Cl, SO42−, Ca2−, Mg2+, Na+, K+, soil organic carbon, and soil organic matter across the stand ages. Seven species were identified as indicators of the three stand ages. Redundancy analysis indicated that the Tugai forest diversity indices were negatively correlated with groundwater depth, groundwater salinity, and distance from the river, and positively associated with electrical conductivity, total salt, pH, Cl, SO42−, CO32−, soil organic matter, soil organic carbon, and soil moisture content. Plant diversity was the highest at 3–6 m groundwater depth, followed by 0–3 m and then 6–9 m, with the lowest recorded at > 9 m. The appropriate groundwater depth for herbs was about 1–4 m, whereas the depth for trees and shrubs was about 3–6 m. The groundwater depth < 6 m was deemed suitable for the growth of desert riparian forests. This results provide a scientific reference for the ecological restoration and protection for Tugai forests in arid areas.

]]>
<![CDATA[Improvement of electrocardiographic diagnostic accuracy of left ventricular hypertrophy using a Machine Learning approach]]> https://www.researchpad.co/article/elastic_article_14491 The electrocardiogram (ECG) is the most common tool used to predict left ventricular hypertrophy (LVH). However, it is limited by its low accuracy (<60%) and sensitivity (30%). We set forth the hypothesis that the Machine Learning (ML) C5.0 algorithm could optimize the ECG in the prediction of LVH by echocardiography (Echo) while also establishing ECG-LVH phenotypes. We used Echo as the standard diagnostic tool to detect LVH and measured the ECG abnormalities found in Echo-LVH. We included 432 patients (power = 99%). Of these, 202 patients (46.7%) had Echo-LVH and 240 (55.6%) were males. We included a wide range of ventricular masses and Echo-LVH severities which were classified as mild (n = 77, 38.1%), moderate (n = 50, 24.7%) and severe (n = 75, 37.1%). Data was divided into a training/testing set (80%/20%) and we applied logistic regression analysis on the ECG measurements. The logistic regression model with the best ability to identify Echo-LVH was introduced into the C5.0 ML algorithm. We created multiple decision trees and selected the tree with the highest performance. The resultant five-level binary decision tree used only six predictive variables and had an accuracy of 71.4% (95%CI, 65.5–80.2), a sensitivity of 79.6%, specificity of 53%, positive predictive value of 66.6% and a negative predictive value of 69.3%. Internal validation reached a mean accuracy of 71.4% (64.4–78.5). Our results were reproduced in a second validation group and a similar diagnostic accuracy was obtained, 73.3% (95%CI, 65.5–80.2), sensitivity (81.6%), specificity (69.3%), positive predictive value (56.3%) and negative predictive value (88.6%). We calculated the Romhilt-Estes multilevel score and compared it to our model. The accuracy of the Romhilt-Estes system had an accuracy of 61.3% (CI95%, 56.5–65.9), a sensitivity of 23.2% and a specificity of 94.8% with similar results in the external validation group. In conclusion, the C5.0 ML algorithm surpassed the accuracy of current ECG criteria in the detection of Echo-LVH. Our new criteria hinge on ECG abnormalities that identify high-risk patients and provide some insight on electrogenesis in Echo-LVH.

]]>
<![CDATA[A biological control model to manage the vector and the infection of <i>Xylella fastidiosa</i> on olive trees]]> https://www.researchpad.co/article/elastic_article_11237 Xylella fastidiosa pauca ST53 is the bacterium responsible for the Olive Quick Decline Syndrome that has killed millions of olive trees in Southern Italy. A recent work demonstrates that a rational integration of vector and transmission control measures, into a strategy based on chemical and physical control means, can manage Xylella fastidiosa invasion and impact below an acceptable economic threshold. In the present study, we propose a biological alternative to the chemical control action, which involves the predetermined use of an available natural enemy of Philaenus spumarius, i.e., Zelus renardii, for adult vector population and infection biocontrol. The paper combines two different approaches: a laboratory experiment to test the predation dynamics of Zelus renardii on Philaenus spumarius and its attitude as candidate for an inundation strategy; a simulated experiment of inundation, to preliminary test the efficacy of such strategy, before eventually proceeding to an in-field experimentation. With this double-fold approach we show that an inundation strategy with Zelus renardii has the potential to furnish an efficient and “green” solution to Xylella fastidiosa invasion, with a reduction of the pathogen incidence below 10%. The biocontrol model presented here could be promising for containing the impact and spread of Xylella fastidiosa, after an in-field validation of the inundation technique. Saving the fruit orchard, the production and the industry in susceptible areas could thus become an attainable goal, within comfortable parameters for sustainability, environmental safety, and effective plant health protection in organic orchard management.

]]>
<![CDATA[Oxycodone versus morphine for cancer pain titration: A systematic review and pharmacoeconomic evaluation]]> https://www.researchpad.co/article/N5c0f7a4c-4090-42ec-ba95-57e120b0c99c

Objective

To evaluate the efficacy, safety and cost-effectiveness of Oxycodone Hydrochloride Controlled-release Tablets (CR oxycodone) and Morphine Sulfate Sustained-release Tablets (SR morphine) for moderate to severe cancer pain titration.

Methods

Randomized controlled trials meeting the inclusion criteria were searched through Medline, Cochrane Library, Pubmed, EMbase, CNKI,VIP and WanFang database from the data of their establishment to June 2019. The efficacy and safety data were extracted from the included literature. The pain control rate was calculated to eatimate efficacy. Meta-analysis was conducted by Revman5.1.4. A decision tree model was built to simulate cancer pain titration process. The initial dose of CR oxycodone and SR morphine group were 20mg and 30mg respectively. Oral immediate-release morphine was administered to treat break-out pain. The incremental cost-effectiveness ratio was performed with TreeAge Pro 2019.

Results

19 studies (1680 patients)were included in this study. Meta-analysis showed that the pain control rate of CR oxycodone and SR morphine were 86% and 82.98% respectively. The costs of CR oxycodone and SR morphine were $23.27 and $13.31. The incremental cost-effectiveness ratio per unit was approximate $329.76. At the willingness-to-pay threshold of $8836, CR oxycodone was cost-effective, while the corresponding probability of being cost-effective at the willingness-to-pay threshold of $300 was 31.6%. One-way sensitivity analysis confirmed robustness of results.

Conclusions

CR oxycodone could be a cost-effective option compared with SR morphine for moderate to severe cancer pain titration in China, according to the threshold defined by the WHO.

]]>
<![CDATA[Do railway lines affect the distribution of woodland birds during autumn?]]> https://www.researchpad.co/article/N5f69b466-8155-4760-b7fb-9a995be0d1c7

Research results on the impact of railway noise on birds show a variety of bird responses. These behaviours are often different from those exhibited by birds occupying habitats along tarred roads. Knowledge of this subject is still incomplete. We attempted to define the influence of a heavily transited railway line on bird communities at stopover sites near the tracks during the autumn migration period. Birds were counted using the point method at 45 observation points located at three distances (30 m, 280 m, 530 m) from the tracks. At each point we determined the habitat parameters and the intensity of noise. A total of 614 individuals from 29 species were recorded on the study plot. The results of our observations indicate that the railway line does not adversely affect woodland birds during the autumn migration. The results showed that the abundance of birds and the species richness were actually the highest near the railway line. Species foraging on invertebrates preferred the neighbourhood of the tracks. The number of the most common species did not differ widely in relation to distance from the tracks. These data may be helpful in planning and managing the environment in the context of bird conservation, protection from railway noise and collisions with trains.

]]>
<![CDATA[Using morphological attributes for the fast assessment of nutritional responses of Buddhist pine (Podocarpus macrophyllus [Thunb.] D. Don) seedlings to exponential fertilization]]> https://www.researchpad.co/article/N5094337c-fdbe-414d-8545-a46f7fbb230f

Culturing slowly growing tree seedlings is a potential approach for managing the conflict between the increasing demand for ornamental stock and the decreasing area of farmlands due to urbanization. In this study, Buddhist pine (Podocarpus macrophyllus [Thunb.] D. Don) seedlings were raised in multishelves with light-emitting diode lighting in the spectrum of 17:75:8 (red:green:blue) at 190–320 μmol m-2 s-1 with controlled temperature and relative humidity at 19.5°C and 60%, respectively. Seedlings were fed by exponential fertilization (EF) (nitrogen [N]-phosphorus [P]2O5-K2O, 10-7-9) at eight rates of 0 (control), 20 (E20), 40 (E40), 60 (E60), 80 (E80), 100 (E100), 120 (E120), and 140 (E140) mg N seedling-1 for four months through 16 fertilizer applications. The nutritional responses of Buddhist pine seedlings can be identified and classified into various stages in response to increasing doses, up to and over 120 N seedling-1. Morphological traits, i.e., the green color index and leaf area (LA) obtained by digital analysis and the fine root growth, all remained constant in response to doses that induced steady nutrient loading. LA had a positive relationship with most of the nutritional parameters. A dose range between 60 and 120 mg N seedling-1 was recommended for the culture of Buddhist pine seedlings. At this range of fertilizer doses, measuring the leaf area through digital scanning can easily and rapidly indicate the inherent nutrient status of the seedlings.

]]>
<![CDATA[Valuing and mapping cork and carbon across land use scenarios in a Portuguese montado landscape]]> https://www.researchpad.co/article/5c8accd7d5eed0c484990136

The ecosystem services approach can inform decision-making by accounting for both short- and long-term benefits from different land use options. Here we used the InVEST toolkit to quantify and map key ecosystem services at the largest publicly-owned agro-silvo-pastoral farmstead in Portugal–a site representative for the montado landscape. We analyzed how Provisioning (cork production) and Regulating & Maintenance (carbon storage and sequestration) services would be affected under three land use change scenarios, which were developed in collaboration with the forest manager of the study area: Cattle Intensification, Forest Improvement, and Residential Development. Results show that increasing cattle or residential development would deliver substantially lower levels of services. We find that extensive management, improvements to forest quality, and promotion of traditional livestock grazing would provide the highest levels of assessed ecosystem services, resulting in 13.5% more carbon storage (worth between $0.34-$7.79 million USD depending on carbon price) and 62.7% more cork production (total value of USD $3.5 million) than the current land use. However, a shift in economic incentives to make sustainable cork harvesting and traditional low-density grazing of smaller ruminants like sheep and goats profitable are likely needed to reward traditional land stewardship and help support this iconic Mediterranean landscape in the future.

]]>
<![CDATA[Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets]]> https://www.researchpad.co/article/5c8acce5d5eed0c484990263

This paper highlights the importance of optimized shape index for agricultural management system analysis that utilizes the contiguous bands of hyperspectral data to define the gradient of the spectral curve and improve image classification accuracy. Currently, a number of machine learning methods would resort to using averaged spectral information over wide bandwidths resulting in loss of crucial information available in those contiguous bands. The loss of information could mean a drop in the discriminative power when it comes to land cover classes with comparable spectral responses, as in the case of cultivated fields versus fallow lands. In this study, we proposed and tested three new optimized novel algorithms based on Moment Distance Index (MDI) that characterizes the whole shape of the spectral curve. The image classification tests conducted on two publicly available hyperspectral data sets (AVIRIS 1992 Indian Pine and HYDICE Washington DC Mall images) showed the robustness of the optimized algorithms in terms of classification accuracy. We achieved an overall accuracy of 98% and 99% for AVIRIS and HYDICE, respectively. The optimized indices were also time efficient as it avoided the process of band dimension reduction, such as those implemented by several well-known classifiers. Our results showed the potential of optimized shape indices, specifically the Moment Distance Ratio Right/Left (MDRRL), to discriminate between types of tillage (corn-min and corn-notill) and between grass/pasture and grass/trees, tree and grass under object-based random forest approach.

]]>
<![CDATA[Potential role of weather, soil and plant microbial communities in rapid decline of apple trees]]> https://www.researchpad.co/article/5c89776ed5eed0c4847d2c8c

An unusual decline and collapse of young established trees known as “rapid apple decline” (RAD) has become a major concern for apple growers, particularly in the northeastern United States. This decline is characterized by stunted growth, pale yellow to reddish leaves, and tree collapse within weeks after onset of symptoms. We studied declining apple trees to identify potential involvement of abiotic and biotic stresses. We used 16S and ITS to profile bacterial and fungal communities in the soil, rhizosphere, roots, and shoots and tested for the presence of six viruses in scions and rootstocks of symptomatic and asymptomatic trees. The viruses detected were not associated with RAD symptoms. Bacterial and fungal populations were highly variable in plant tissue, soil and rhizosphere samples, with bacteroidetes, firmicutes, proteobacteria, acidobacteria, and actinobacteria the predominant bacterial classes in various samples. ‘Alphaproteobacteria-rickettsiales’, a bacterial class usually reduced in water-limiting soils, had significantly low abundance in root samples of symptomatic trees. Basidiomycota and Ascomycota fungal classes were the most common fungal classes observed, but neither showed differential enrichment between symptomatic and asymptomatic trees. Analyzing weather data showed an extremely cold winter followed by drought in 2015–2016, which likely weakened the trees to make them more susceptible to varied stresses. In addition, similar physical and nutritional soil composition from symptomatic and asymptomatic trees rules out the role of nutritional stress in RAD. Necrotic lesions and wood decay symptoms dispersing from bark or vascular cambium towards the heartwood were observed primarily below the graft union of declining apple trees, suggesting that the rootstock is the originating point of RAD. We speculate that differences in abiotic factors such as moisture levels in declining roots in combination with extreme weather profiles might cause RAD but cannot clearly rule out the involvement of other factors.

]]>
<![CDATA[Human disturbance impacts the integrity of sacred church forests, Ethiopia]]> https://www.researchpad.co/article/5c8977abd5eed0c4847d32dd

Land-use change can have profound effects on forest communities, compromising seedling recruitment and growth, and long-term persistence of forests on the landscape. Continued forest conversion to agriculture causes forest fragmentation which decreases forest size, increases edge effects and forest isolation, all of which negatively impact forest health. These fragmentation effects are magnified by human use of forests, which can compromise the continued persistence of species in these forests and the ability of the forests to support the communities that depend on them. We examined the extent and influence of human disturbance (e.g. weedy taxa, native and exotic tree plantations, clearings, buildings) on the ecological status of sacred church forests in the northern highlands of South Gondar, Ethiopia and hypothesized that disturbance would have a negative effect. We found that disturbance was high across all forests (56%) and was negatively associated with tree species richness, density, and biomass and seedling richness and density. Contrary to expectation, we found that forests < 15.5 ha show no difference in disturbance level with distance from population center. Based on our findings, we recommend that local conservation strategies not only protect large forests, but also the small and highly used forests in South Gondar which are critical to the needs of local people, including preserving large trees for seed sources, removing exotic and weedy species from forests, and reducing clearings and trails within forests.

]]>
<![CDATA[Long-term exposure to more frequent disturbances increases baseline carbon in some ecosystems: Mapping and quantifying the disturbance frequency-ecosystem C relationship]]> https://www.researchpad.co/article/5c785015d5eed0c484007c44

Disturbance regimes have a major influence on the baseline carbon that characterizes any particular ecosystem. Often regimes result in lower average regional baseline C (compared to those same systems if the disturbance processes were lessened/removed). However, in infrequently disturbed systems the role of disturbance as a “background” process that influences broad-scale, baseline C levels is often neglected. Long-term chronosequences suggest disturbances in these systems may serve to increase regional biomass C stocks by maintaining productivity. However, that inference has not been tested spatially. Here, the large forested system of southeast Alaska, USA, is utilized to 1) estimate baseline regional C stocks, 2) test the fundamental disturbance-ecosystem C relationship, 3) estimate the cumulative impact of disturbances on baseline C. Using 1491 ground points with carbon measurements and a novel way of mapping disturbance regimes, the relationship between total biomass C, disturbance exposure, and climate was analyzed statistically. A spatial model was created to determine regional C and compare different disturbance scenarios. In this infrequently disturbed ecosystem, higher disturbance exposure is correlated with higher biomass C, supporting the hypothesis that disturbances maintain productivity at broad scales. The region is estimated to potentially contain a baseline 1.21–1.52 Pg biomass C (when unmanaged). Removal of wind and landslides from the model resulted in lower net C stocks (-2 to -19% reduction), though the effect was heterogeneous on finer scales. There removal of landslides alone had a larger effect then landslide and wind combined removal. The relationship between higher disturbance exposure and higher biomass within the broad ecosystem (which, on average, has a very low disturbance frequency) suggest that disturbances can serve maintain higher levels of productivity in infrequently disturbed but very C dense ecosystems. Carbon research in other systems, especially those where disturbances are infrequent relative to successional processes, should consider the role of disturbances in maintaining baseline ecosystem productivity.

]]>
<![CDATA[Applicability of personal laser scanning in forestry inventory]]> https://www.researchpad.co/article/5c803c6ad5eed0c484ad8913

Light Detection and Ranging (LiDAR) technology has been widely used in forestry surveys in the form of airborne laser scanning (ALS), terrestrial laser scanning (TLS), and mobile laser scanning (MLS). The acquisition of important basic tree parameters (e.g., diameter at breast height and tree position) in forest inventory did not solve the problem of low measurement efficiency or weak GNSS signal under the canopy. A personal laser scanning (PLS) device combined with SLAM technology provides an effective solution for forest inventory under complex conditions with its light weight and flexible mobility. This study proposes a new method for calculating the volume of a cylinder using point cloud data obtained by a PLS device by fitting to a polygonal cylinder to calculate the diameter of the trunk. The point cloud data of tree trunks of different thickness were modeled using different fitting methods. The rate of correct tree trunk detection was 93.3% and the total deviation of the estimations of tree diameter at breast height (DBH) was -1.26 cm. The root mean square errors (RMSEs) of the estimations of the extracted DBH and the tree position were 1.58 cm and 26 cm, respectively. The survey efficiency of the personal laser scanning (PLS) device was 30m2/min for each investigator, compared with 0.91m2/min for the field survey. The test demonstrated that the PLS device combined with the SLAM algorithm provides an efficient and convenient solution for forest inventory.

]]>
<![CDATA[Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data]]> https://www.researchpad.co/article/5c6f151bd5eed0c48467adda

Introduction

Aortic distensibility can be calculated using semi-automated methods to segment the aortic lumen on cine CMR (Cardiovascular Magnetic Resonance) images. However, these methods require visual quality control and manual localization of the region of interest (ROI) of ascending (AA) and proximal descending (PDA) aorta, which limit the analysis in large-scale population-based studies. Using 5100 scans from UK Biobank, this study sought to develop and validate a fully automated method to 1) detect and locate the ROIs of AA and PDA, and 2) provide a quality control mechanism.

Methods

The automated AA and PDA detection-localization algorithm followed these steps: 1) foreground segmentation; 2) detection of candidate ROIs by Circular Hough Transform (CHT); 3) spatial, histogram and shape feature extraction for candidate ROIs; 4) AA and PDA detection using Random Forest (RF); 5) quality control based on RF detection probability. To provide the ground truth, overall image quality (IQ = 0–3 from poor to good) and aortic locations were visually assessed by 13 observers. The automated algorithm was trained on 1200 scans and Dice Similarity Coefficient (DSC) was used to calculate the agreement between ground truth and automatically detected ROIs.

Results

The automated algorithm was tested on 3900 scans. Detection accuracy was 99.4% for AA and 99.8% for PDA. Aorta localization showed excellent agreement with the ground truth, with DSC ≥ 0.9 in 94.8% of AA (DSC = 0.97 ± 0.04) and 99.5% of PDA cases (DSC = 0.98 ± 0.03). AA×PDA detection probabilities could discriminate scans with IQ ≥ 1 from those severely corrupted by artefacts (AUC = 90.6%). If scans with detection probability < 0.75 were excluded (350 scans), the algorithm was able to correctly detect and localize AA and PDA in all the remaining 3550 scans (100% accuracy).

Conclusion

The proposed method for automated AA and PDA localization was extremely accurate and the automatically derived detection probabilities provided a robust mechanism to detect low quality scans for further human review. Applying the proposed localization and quality control techniques promises at least a ten-fold reduction in human involvement without sacrificing any accuracy.

]]>