ResearchPad - viscosity https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Nutritional and physicochemical characteristics of purple sweet corn juice before and after boiling]]> https://www.researchpad.co/article/elastic_article_7720 Sweet corn juice is becoming increasingly popular in China. In order to provide valuable health-related information to consumers, the nutritional and physicochemical characteristics of raw and boiled purple sweet corn juices were herein investigated. Sugars, antinutrients, total free phenols, anthocyanins, and antioxidant activity were analyzed by conventional chemical methods. The viscosity and stability of juices were determined by Ubbelohde viscosity meter and centrifugation, respectively. Boiling process could elevate viscosity, stability and sugar content, and reduce antinutrients, total free phenols, anthocyanins, and antioxidant activity in corn juice. In addition, short time boiling efficiently reduced the degradation of anthocyanins during subsequent refrigeration. The content of amino acids, vitamin B1/B2 and E were detected by High Performance Liquid Chromatography. Gas Chromatography Mass Spectrometry was used for the analysis of fatty acids and aroma compounds. Several aroma compounds not previously reported in corn were identified, including 1-heptanol, 2-methyl-2-butenal, (Z)-3-nonen-1-ol, 3-ethyl-2-methyl-1,3-hexadiene, and 2,4-bis(1,1-dimethylethyl)phenol. Interestingly, the boiling process had no apparent effect on the amino acids profile, but it caused a 45.8% loss of fatty acids in the juice by promoting the retention of fatty acids in the corn residue. These results provide detailed information that could be used for increasing consumers’ knowledge of sweet corn juice, further development of sweet corn juice by food producers, and maize breeding programs.

]]>
<![CDATA[Targeted fluorescence lifetime probes reveal responsive organelle viscosity and membrane fluidity]]> https://www.researchpad.co/article/5c6f151fd5eed0c48467ae1c

The only way to visually observe cellular viscosity, which can greatly influence biological reactions and has been linked to several human diseases, is through viscosity imaging. Imaging cellular viscosity has allowed the mapping of viscosity in cells, and the next frontier is targeted viscosity imaging of organelles and their microenvironments. Here we present a fluorescent molecular rotor/FLIM framework to image both organellar viscosity and membrane fluidity, using a combination of chemical targeting and organelle extraction. For demonstration, we image matrix viscosity and membrane fluidity of mitochondria, which have been linked to human diseases, including Alzheimer’s Disease and Leigh’s syndrome. We find that both are highly dynamic and responsive to small environmental and physiological changes, even under non-pathological conditions. This shows that neither viscosity nor fluidity can be assumed to be fixed and underlines the need for single-cell, and now even single-organelle, imaging.

]]>
<![CDATA[Variations in pulsatile flow around stenosed microchannel depending on viscosity]]> https://www.researchpad.co/article/5c5369aed5eed0c484a463f8

In studying blood flow in the vessels, the characteristics of non-Newtonian fluid are important, considering the role of viscosity in rheology. Stenosis, which is an abnormal narrowing of the vessel, has an influence on flow behavior. Therefore, analysis of blood flow in stenosed vessels is essential. However, most of them exist as simulation outcomes. In this study, non-Newtonian fluid was observed in stenosed microchannels under the pulsatile flow condition. A polydimethylsiloxane channel with 60% stenosis was fabricated by combining an optic fiber and a petri dish, resembling a mold. Three types of samples were prepared by changing the concentrations of xanthan gum, which induces a shear thinning effect (phosphate buffered saline (PBS) solution as the Newtonian fluid and two non-Newtonian fluids mimicking normal blood and highly viscous blood analog). The viscosity of the samples was measured using a Y-shaped microfluidic viscometer. Thereafter, velocity profiles were analyzed under the pulsatile flow condition using the micro-particle image velocimetry (PIV) method. For the Newtonian fluid, the streamline was skewed more to the wall of the channel. The velocity profile of the non-Newtonian fluid was generally blunter than that of the Newtonian fluid. A highly oscillating wall shear stress (WSS) during the pulsatile phase may be attributed to such a bluntness of flow under the same wall shear rate condition with the Newtonian fluid. In addition, a highly viscous flow contributes to the variation in the WSS after passing through the stenosed structures. A similar tendency was observed in simulation results. Such a variation in the WSS was associated with plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.

]]>
<![CDATA[Viscoelastic parameters as discriminators of breast masses: Initial human study results]]> https://www.researchpad.co/article/5bca48d540307c0516656413

Shear wave elastography is emerging as a clinically valuable diagnostic tool to differentiate between benign and malignant breast masses. Elastography techniques assume that soft tissue can be modelled as a purely elastic medium. However, this assumption is often violated as soft tissue exhibits viscoelastic properties. In order to explore the role of viscoelastic parameters in suspicious breast masses, a study was conducted on a group of patients using shear wave dispersion ultrasound vibrometry in the frequency range of 50–400 Hz. A total of 43 female patients with suspicious breast masses were recruited before their scheduled biopsy. Of those, 15 patients did not meet the data selection criteria. Voigt model based shear elasticity showed a significantly (p = 7.88x10-6) higher median value for the 13 malignant masses (16.76±13.10 kPa) compared to 15 benign masses (1.40±1.12 kPa). Voigt model based shear viscosity was significantly different (p = 4.13x10-5) between malignant (8.22±3.36 Pa-s) and benign masses (2.83±1.47 Pa-s). Moreover, the estimated time constant from the Voigt model, which is dependent on both shear elasticity and viscosity, differed significantly (p = 6.13x10-5) between malignant (0.68±0.33 ms) and benign masses (3.05±1.95 ms). Results suggest that besides elasticity, viscosity based parameters like shear viscosity and time constant can also be used to differentiate between malignant and benign breast masses.

]]>
<![CDATA[The importance of mechanical constraints for proper polarization and psuedo-cleavage furrow generation in the early Caenorhabditis elegans embryo]]> https://www.researchpad.co/article/5b4f2cd2463d7e25bffba872

Intracellular polarization, where a cell specifies a spatial axis by segregation of specific factors, is a fundamental biological process. In the early embryo of the nematode worm Caenorhabditis elegans (C. elegans), polarization is often accompanied by deformations of the cortex, a highly contractile structure consisting of actin filaments cross-linked by the motor protein myosin (actomyosin). It has been suggested that the eggshell surrounding the early embryo plays a role in polarization although its function is not understood. Here we develop a mathematical model which couples a reaction-diffusion model of actomyosin dynamics with a phase field model of the cell cortex to implicitly track cell shape changes in the early C. elegans embryo. We investigate the potential rigidity effect of the geometric constraint imposed by the presence and size of the eggshell on polarization dynamics. Our model suggests that the geometric constraint of the eggshell is essential for proper polarization and the size of the eggshell also affects the dynamics of polarization. Therefore, we conclude that geometric constraint on a cell might affect the dynamics of a biochemical process.

]]>
<![CDATA[Microfluidic viscometry using magnetically actuated micropost arrays]]> https://www.researchpad.co/article/5b600f82463d7e3af00e5a88

Here we describe development of a microfluidic viscometer based on arrays of magnetically actuated micro-posts. Quantitative viscosities over a range of three orders of magnitude were determined for samples of less than 20 μL. This represents the first demonstration of quantitative viscometry using driven flexible micropost arrays. Critical to the success of our system is a comprehensive analytical model that includes the mechanical and magnetic properties of the actuating posts, the optical readout, and fluid-structure interactions. We found that alterations of the actuator beat shape as parameterized by the dimensionless “sperm number” must be taken into account to determine the fluid properties from the measured actuator dynamics. Beyond our particular system, the model described here can provide dynamics predictions for a broad class of flexible microactuator designs. We also show how the model can guide the design of new arrays that expand the accessible range of measurements.

]]>
<![CDATA[The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment]]> https://www.researchpad.co/article/5989da4fab0ee8fa60b8d8df

Introduction

Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom.

Methods

A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions.

Results

The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI).

Conclusion

We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution.

]]>
<![CDATA[Optimization and evaluation of astragalus polysaccharide injectable thermoresponsive in-situ gels]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc195

The objective of this study was to develop an injectable in situ forming gel system based on Poloxamer for sustained release of Astragalus polysaccharide (APS), thus achieved once or twice administration instead of frequent dosing during long-term treatment. The optimal formulation is 10 g APS, 18 g poloxamer 407, 2 g poloxamer 188, 0.15 g CMC-Na, 0.85 g sodium chloride in 100 ml gel in situ which had a preferable sol-gel transition temperature(T sol-gel) (34.1 ± 0.4°C), and good stability. In vitro release studies, all formulations containing polymer additives had prolonged release time and decreased initial burst to some extent. The optimal formulation containing 0.15% CMC-Na showed a best sustained release profile for about 132 h with the lowest initial burst in vitro about 16.30% in 12 h). In vivo, Male BALB/c mice (18–20 g) were administrated with APS in-situ gel just once, the values of immune organ indices, spleen lymphocyte proliferation, and serum IgM, IgG, IL-2 and IL-6 had significant increase, which was consistent with the mice given daily APS injections (7 times), while the above indices were increased more significantly in which administrated with APS in-situ gel twice. Based on these results, it can be concluded that the Poloxamer depot is a promising carrier for the sustained release of APS with an ideal release behavior.

]]>
<![CDATA[Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation]]> https://www.researchpad.co/article/5989da95ab0ee8fa60ba187f

Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

]]>
<![CDATA[Active microrheology determines scale-dependent material properties of Chaetopterus mucus]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0133

We characterize the lengthscale-dependent rheological properties of mucus from the ubiquitous Chaetopterus marine worm. We use optically trapped probes (2–10 μm) to induce microscopic strains and measure the stress response as a function of oscillation amplitude. Our results show that viscoelastic properties are highly dependent on strain scale (l), indicating three distinct lengthscale-dependent regimes at l1 ≤4 μm, l2≈4–10 μm, and l3≥10 μm. While mucus response is similar to water for l1, suggesting that probes rarely contact the mucus mesh, the response for l2 is distinctly more viscous and independent of probe size, indicative of continuum mechanics. Only for l3 does the response match the macroscopic elasticity, likely due to additional stiffer constraints that strongly resist probe displacement. Our results suggest that, rather than a single lengthscale governing crossover from viscous to elastic, mucus responds as a hierarchical network with a loose biopolymer mesh coupled to a larger scaffold responsible for macroscopic gel-like mechanics.

]]>
<![CDATA[Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength]]> https://www.researchpad.co/article/5989d9ebab0ee8fa60b6ca29

We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid.

]]>
<![CDATA[Development of topical ophthalmic In Situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdba61

The goal of this study was to develop and characterize an ion-activated in situ gel-forming estradiol (E2) solution eye drops intended for the prevention of age-related cataracts. Accordingly, in situ gelling eye drops were made using gellan gum as an ion-activated gel-forming polymer, polysorbate-80 as drug solubilizing agent, mannitol as tonicity agent, and combination of potassium sorbate and edetate disodium dihydrate (EDTA) as preservatives. The formulations were tested for the following characteristics: pH, clarity, osmolality, antimicrobial efficacy, rheological behavior, and in vitro drug release. Stability of the formulation was also monitored for 6 months at multiple storage conditions per ICH Q1A (R2) guidelines. The solution eye drops resulted in an in-situ phase change to gel-state when mixed with simulated tear fluid (STF). The gel structure formation was confirmed by viscoelastic measurements. Drug release from the gel followed non-fickian mechanism with 80% of drug released in 8 hr. The formulations were found to be clear, isotonic with suitable pH and viscoelastic behavior and stable at accelerated and long-term storage conditions for 6 months. In vitro results suggest that the developed formulation is suitable for further investigation in animal models to elucidate the ability of estrogen to prevent and delay cataracts.

]]>
<![CDATA[Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbba5

The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14–24 μm2/s for EGFP and 3–7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer.

]]>
<![CDATA[Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd57

The efficacy of two novel artificial vitreous body substitutes (VBS) consisting of highly biocompatible thiolated cross-linked hyaluronic acid (HA)-based hydrogels in comparison to silicone oil in a model of retinal detachment was investigated. Pars plana vitrectomy (23G) was performed in the right eye of 24 pigmented rabbits. Retinal detachment of two quadrants was induced by creating a small retinotomy near the vascular arcade and injecting balanced salt solution (BSS) subretinally. The retina was reattached by injecting air, which was followed by increasing the infusion pressure, and the retinal tear was treated by endolaser photocoagulation. At the end of the procedure, the eye was filled either with 5000-cs silicone oil (after fluid air exchange) or the respective hydrogel (with two different viscosities). Follow-up examination included slit lamp examination, funduscopy, intraocular pressure measurements (IOP), optical coherence tomography (OCT) and electroretinogram (ERG) measurements. After a maximum follow-up of four weeks both eyes were removed, examined macroscopically, photographed, and prepared for histology. Of the eight rabbits that received silicone oil, seven (87.5%) developed a recurrent retinal detachment with pronounced proliferative vitreoretinopathy within the first two weeks after surgery. In contrast, in the hydrogel treated eyes, the retina stayed attached in the majority of the cases (73.3%). IOP and retinal morphology were normal as long as the retina remained re-attached. In conclusions, this model of retinal detachment, both thiolated crosslinked hyaluronate hydrogels showed superior efficacy when compared to silicone oil. These hydrogels have a promising potential as novel vitreous body substitutes.

]]>
<![CDATA[Effect of Carboxymethylation on the Rheological Properties of Hyaluronan]]> https://www.researchpad.co/article/5989dab0ab0ee8fa60bab333

Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30–40% modification. This was followed by an increase in viscosity around 45–50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions.

]]>
<![CDATA[Dynamics of initial drop splashing on a dry smooth surface]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf730

We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study.

]]>
<![CDATA[Orientation-Based Control of Microfluidics]]> https://www.researchpad.co/article/5989db07ab0ee8fa60bc8a31

Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth’s gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings.

]]>
<![CDATA[Fabrication of Artificial Food Bolus for Evaluation of Swallowing]]> https://www.researchpad.co/article/5989da40ab0ee8fa60b89a68

Simple and easy methods to evaluate swallowing are required because of the recently increased need of rehabilitation for dysphagia. "Artificial food bolus", but not "artificial food", would be a valuable tool for swallowing evaluation without considering the mastication effect which is altered according to the individual's oral condition. Thus, this study was carried out to fabricate artificial bolus resembling natural food bolus. The mechanical property and the volume change of food bolus in normal people were firstly investigated. Thirty healthy adults without dysphagia were selected and asked to chew four sample foods (rice cake, peanut, burdock, and gummy candy). The results indicated that Young’s modulus of bolus before swallowing was below 150 kPa. The bolus volume before swallowing was below 400 mm3. In addition, the saliva component ratio of each bolus was approximately 30wt%, and the average saliva viscosity of research participants was approximately 10 mPa•s. Based on the obtained data, artificial food bolus was designed and fabricated by using alginate hydrogel as a visco-elastic material and gelatin solution as a viscotic material with a ratio of 7:3 based on weight. Consequently, the swallowing time of fabricated artificial food bolus was measured among the same participants. The results indicated the participants swallowed fabricated food bolus with similar manner reflecting their mechanical property and volume. Thus, this artificial food bolus would be a promising tool for evaluation of swallowing.

]]>
<![CDATA[Polyesters Based on Linoleic Acid for Biolubricant Basestocks: Low-Temperature, Tribological and Rheological Properties]]> https://www.researchpad.co/article/5989da97ab0ee8fa60ba21f2

Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (15) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester’s synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.

]]>
<![CDATA[Analysis of the Viscoelastic Properties of the Human Cornea Using Scheimpflug Imaging in Inflation Experiment of Eye Globes]]> https://www.researchpad.co/article/5989daf7ab0ee8fa60bc3414

Purpose

To demonstrate a Scheimpflug-based imaging procedure for investigating the depth- and time-dependent strain response of the human cornea to inflation testing of whole eye globes.

Methods

Six specimens, three of which with intact corneal epithelium, were mounted in a customized apparatus within a humidity and temperature-monitored wet chamber. Each specimen was subjected to two mechanical tests in order to measure corneal strain resulting from application of cyclic (cyclic regimen) and constant (creep regimen) stress by changing the intra-ocular pressure (IOP) within physiological ranges (18–42 mmHg). Corneal shape changes were analyzed as a function of IOP and both corneal stress-strain curves and creep curves were generated.

Results

The procedure was highly accurate and repeatable. Upon cyclic stress application, a biomechanical corneal elasticity gradient was found in the front-back direction. The average Young's modulus of the anterior cornea ranged between 2.28±0.87 MPa and 3.30±0.90 MPa in specimens with and without intact epithelium (P = 0.05) respectively. The Young's modulus of the posterior cornea was on average 0.21±0.09 MPa and 0.17±0.06 MPa (P>0.05) respectively. The time-dependent strain response of the cornea to creep testing was quantified by fitting data to a modified Zener model for extracting both the relaxation time and compliance function.

Conclusion

Cyclic and creep mechanical tests are valuable for investigating the strain response of the intact human cornea within physiological IOP ranges, providing meaningful results that can be translated to clinic. The presence of epithelium influences the results of anterior corneal shape changes when monitoring deformation via Scheimpflug imaging in inflation experiments of whole eye globes.

]]>