ResearchPad - weeds https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Seed germination of <i>Bidens subalternans</i> DC. exposed to different environmental factors]]> https://www.researchpad.co/article/elastic_article_14560 Bidens subalternans DC. is a weed found in several tropical countries such as Brazil. Large number of produced seeds and easy dispersion favor the colonization of agricultural fields by this species. To know the factors that affect the germination of B. subalternans can help to understand its ecology, permitting to develop control strategies. Laboratory experiments were carried out to evaluate how the temperature, photoperiod, burial depth, water deficit, and salt stress affect the seed germination of B. subalternans. The means of the treatments of each experiment were shown in scatter plots with the bars indicating the least significant difference (LSD, p≤0.05). The results showed a germination percentage above 77% for a wide alternating temperature (15/20 C to 30/35 C night/day). The highest germination and uniformity occurred at 25/30°C night/day. Only 11% of the seeds germinated at a temperature of 35/40°C night/day. The deeper burial of seeds reduced their germination. Only 17% of the seeds germinated in darkness conditions. However, in constant light and 12 hours of light/dark conditions the germination percentage was over 96%, confirming the light dependence of the B. subalternans during germination. In constant light and 12 hours of light/dark, the germination was over 96%. B. subalternans seeds showed sensitivity to water and salt stress, and their germination was inhibited under a water potential of -0.4 MPa and 100.09 mM, respectively. The sensitivity of B. subalternans seeds to high temperatures, water stress, and salt stress explains the high frequency of this weed in south-central Brazil. The light and sowing depth showed that burial of seeds by mechanical control is a strategy to reduce the high infestation of B. subalternans.

]]>
<![CDATA[Bund removal to re-establish tidal flow, remove aquatic weeds and restore coastal wetland services—North Queensland, Australia]]> https://www.researchpad.co/article/Neac5db12-b809-4a22-afa7-0c243544d6ab

The shallow tidal and freshwater coastal wetlands adjacent to the Great Barrier Reef lagoon provide a vital nursery and feeding complex that supports the life cycles of marine and freshwater fish, important native vegetation and vital bird habitat. Urban and agricultural development threaten these wetlands, with many of the coastal wetlands becoming lost or changed due to the construction of artificial barriers (e.g. bunds, roads, culverts and floodgates). Infestation by weeds has become a major issue within many of the wetlands modified (bunded) for ponded pasture growth last century. A range of expensive chemical and mechanical control methods have been used in an attempt to restore some of these coastal wetlands, with limited success. This study describes an alternative approach to those methods, investigating the impact of tidal reinstatement after bund removal on weed infestation, associated changes in water quality, and fish biodiversity, in the Boolgooroo lagoon region of the Mungalla wetlands, East of Ingham in North Queensland. High resolution remote sensing, electrofishing and in-water logging was used to track changes over time– 1 year before and 4 years after removal of an earth bund. With tides only penetrating the wetland a few times yearly, gross changes towards a more natural system occurred within a relatively short timeframe, leading to a major reduction in infestation of olive hymenachne, water hyacinth and salvina, reappearance of native vegetation, improvements in water quality, and a tripling of fish diversity. Weed abundance and water quality does appear to oscillate however, dependent on summer rainfall, as changes in hydraulic pressure stops or allows tidal ingress (fresh/saline cycling). With an estimated 30% of coastal wetlands bunded in the Great Barrier Reef region, a passive remediation method such as reintroduction of tidal flow by removal of an earth bund or levee could provide a more cost effective and sustainable means of controlling freshwater weeds and improving coastal water quality into the future.

]]>
<![CDATA[Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil]]> https://www.researchpad.co/article/5c5df35fd5eed0c4845811ca

No-tillage with stubble retention is a widely used cropping system for its conservation and yield benefits. The no-tillage farming system in southern Australia relies heavily on herbicides for weed management, but heavy crop residues may have a negative impact on the activity of pre-emergent herbicides applied. Any herbicide intercepted by the crop residue may not reach the soil surface without timely rainfall and may dissipate due to volatilisation, photo-degradation and/or microbial activity. Two experiments were carried out to investigate the interception of prosulfocarb, pyroxasulfone, and trifluralin herbicides by wheat residue and retention following simulated rainfall. For the first experiment, there were four simulated rainfall amounts (0, 5, 10, and 20 mm), three intensities (5, 10, and 20 mm h–1) and five application times (immediately after spraying herbicide, 6 h, 1, 7, and 14 days after spraying). In the second experiment, 20 mm of rainfall was applied at 10 mm h–1 in either 4 × 5 mm rainfall events over two days, 2 × 10 mm rainfall events over one day, or a single 20 mm rainfall event, with a no-rainfall control treatment. Bioassays were used to assess the herbicide activity/availability in the soil and remaining on the residue, using cucumber (Cucumis sativus L.) and Italian ryegrass (Lolium multiflorum Lam.) as indicator plants. At higher rainfall amounts, most of the herbicide leached from the stubble into the soil soon after application; more so with rain in one event rather than multiple events. However, the intensity of rainfall had no effect. Pyroxasulfone leached easily from the residue to the soil to potentially offer good weed control, prosulfocarb had an intermediary leaching effect, while only a small amount of trifluralin leached from stubble after rain. Therefore, in no-tillage situations with large amounts of crop residue present on the soil surface, herbicides that leach easily from the residue should be considered, like pyroxasulfone.

]]>
<![CDATA[Weed responses to fallow management in Pacific Northwest dryland cropping systems]]> https://www.researchpad.co/article/5c0e98c4d5eed0c484eab142

A two-year rotation of summer fallow (SF)/winter wheat (WW) is the most common cropping system in low precipitation areas of the U.S. Pacific Northwest (PNW). In SF, multiple tillage operations are used to manage weeds and maximize soil water storage and potential WW yield. Reduced tillage fallow (RTF) is an alternative to SF that leaves >30% of the previous crop’s residue on the surface. A four-year (2014–18) field study was conducted to evaluate the influence of SF and RTF on weed species density, cover and composition in dryland WW; determine if changes in these weed infestation attributes have any influence on crop density and yield; and evaluate economic costs of each type of fallow management. The experimental design was randomized complete block with four replications where each phase of SF/WW and RTF/WW rotations was present every year. Individual plots of WW were divided into a weedy sub-plot with no weed control, general area with chemical weed control, and weed-free sub-plot where weeds were manually removed. Infestations of annual grass and other weeds in weedy sub-plots increased throughout the study. Grass weed cover, consisting mainly of downy brome (Bromus tectorum L.), and total weed cover were significantly lower in WW following RTF than following SF in all years except 2018. Densities of grass and total weeds were similar in both fallow managements indicating that weed plants were larger in WW following SF than following RTF due to earlier or faster emergence. Grass cover differences were not found in general areas likely because of a reduced seedbank. When weeds were present, mean yield of WW was higher following RTF than SF indicating that weeds were less competitive in RTF. Reduced tillage fallow could improve weed management in fallow/WW cropping systems of the PNW compared to SF/WW, particularly if the most problematic species are grasses.

]]>
<![CDATA[Escape to Ferality: The Endoferal Origin of Weedy Rice from Crop Rice through De-Domestication]]> https://www.researchpad.co/article/5989da6bab0ee8fa60b92d4f

Domestication is the hallmark of evolution and civilization and harnesses biodiversity through selection for specific traits. In regions where domesticated lines are grown near wild relatives, congeneric sources of aggressive weedy genotypes cause major economic losses. Thus, the origins of weedy genotypes where no congeneric species occur raise questions regarding management effectiveness and evolutionary mechanisms responsible for weedy population success. Since eradication in the 1970s, California growers avoided weedy rice through continuous flood culture and zero-tolerance guidelines, preventing the import, presence, and movement of weedy seeds. In 2003, after decades of no reported presence in California, a weedy rice population was confirmed in dry-seeded fields. Our objectives were to identify the origins and establishment of this population and pinpoint possible phenotypes involved. We show that California weedy rice is derived from a different genetic source among a broad range of AA genome Oryzas and is most recently diverged from O. sativa temperate japonica cultivated in California. In contrast, other weedy rice ecotypes in North America (Southern US) originate from weedy genotypes from China near wild Oryza, and are derived through existing crop-wild relative crosses. Analyses of morphological data show that California weedy rice subgroups have phenotypes like medium-grain or gourmet cultivars, but have colored pericarp, seed shattering, and awns like wild relatives, suggesting that reversion to non-domestic or wild-like traits can occur following domestication, despite apparent fixation of domestication alleles. Additionally, these results indicate that preventive methods focused on incoming weed sources through contamination may miss burgeoning weedy genotypes that rapidly adapt, establish, and proliferate. Investigating the common and unique evolutionary mechanisms underlying global weed origins and subsequent interactions with crop relatives sheds light on how weeds evolve and addresses broader questions regarding the stability of selection during domestication and crop improvement.

]]>
<![CDATA[Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdca6a

Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil.

]]>
<![CDATA[Weed abundance is positively correlated with native plant diversity in grasslands of southern Australia]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be025b

Weeds are commonly considered a threat to biodiversity, yet interactions between native and exotic species in grasslands are poorly understood and reported results vary depending on the spatial scale of study, the factors controlled for and the response variables analysed. We tested whether weed presence and abundance is related to declines in biodiversity in Australian grasslands. We employed existing field data from 241 plots along a disturbance gradient and correlated species richness, cover and Shannon diversity for natives and exotics, controlling for seasonal rainfall, climatic gradients and nutrient status. We found no negative relationships in terms of emergent diversity metrics and occupation of space, indeed, many positive relationships were revealed. When split by land-use, differences were found along the disturbance gradient. In high-moderately disturbed grasslands associated with land-uses such as cropping and modified pastures, positive associations were enhanced. Tolerance and facilitation mechanisms may be involved, such as complementary roles through different life history strategies: the exotic flora was dominated mainly by annual grasses and herbs whereas the native flora represented more diverse growth-forms with a higher proportion of perennials. The positive relationships existing between native and exotic plant species in high-moderately disturbed grasslands of South Australia are most likely due to facilitation through different strategies in occupation of space given that the effect of habitat suitability was controlled for by including environmental and disturbance factors. Consequently, although particular weeds may negatively impact biodiversity, this cannot be generalised and management focusing on general weed eradication in grasslands might be ineffectual.

]]>
<![CDATA[Comparing Dislodgeable 2,4-D Residues across Athletic Field Turfgrass Species and Time]]> https://www.researchpad.co/article/5989db20ab0ee8fa60bcf207

2,4-dimethylamine salt (2,4-D) is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis) and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L.), which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time) and PM (14:00) sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied) compared to dormant hybrid bermudagrass (2.3 to 2.9%), as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%). Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure.

]]>
<![CDATA[Seed germination in relation to the invasiveness in spiny amaranth and edible amaranth in Xishuangbanna, SW China]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc8c9

Both spiny and edible amaranths (Amaranthus spinosus and A. tricolor) are exotic annuals in China that produce numerous small seeds every year. Spiny amaranth has become a successful invader and a troublesome weed in Xishuangbanna, but edible amaranth has not, although it is widely grown as a vegetable there. As seed germination is one of the most important life-stages contributing to the ability of a plant to become invasive, we conducted experiments to compare the effects of high temperature and water stress on seed germination in two varieties each of spiny amaranth and edible amaranth. Overall, the seeds of both amaranth species exhibited adaptation to high temperature and water stress, including tolerance to ground temperatures of 70°C for air-dried seeds, which is consistent with their behavior in their native ranges in the tropics. As expected, the invasive spiny amaranth seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 45°C, and to imbibition-desiccation treatment, compared to edible amaranth seeds. Unexpectedly, edible amaranth seeds exhibited higher germination at extreme temperatures (10°C, 15°C, and 40°C), and at lower water potential (below -0.6 MPa). It is likely that cultivation of edible amaranth has selected seed traits that include rapid germination and germination under stressful conditions, either of which, under natural conditions, may result in the death of most germinating edible amaranth seeds and prevent them from becoming invasive weeds in Xishuangbanna. This study suggests that rapid germination and high germination under stress conditions—excellent seed traits for crops and for many invasive species—might be a disadvantage under natural conditions if these traits are asynchronous with natural local conditions that support successful germination.

]]>
<![CDATA[Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbe44

Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides.

]]>
<![CDATA[EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia]]> https://www.researchpad.co/article/5989da6cab0ee8fa60b933a0

Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

]]>
<![CDATA[Seed Detection and Discrimination by Ground Beetles (Coleoptera: Carabidae) Are Associated with Olfactory Cues]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdce8d

Olfactory ability is an element of fitness in many animals, guiding choices among alternatives such as mating partners or food. Ground beetles (Coleoptera; Carabidae), exhibit preferences for prey, and some species are well-known weed seed predators. We used olfactometer-based bioassays to determine if olfactory stimuli are associated with detection of Brassica napus L., Sinapis arvensis L., and Thlaspi arvense L. seeds by ground beetles characteristic of agroecosystems, and whether behavioural responses to seed odors depended on seed physiological state (imbibed or unimbibed). Imbibed B.napus seeds were preferred over other weed species by two of the three carabid species tested. Only A. littoralis responded significantly to unimbibed seeds of B. napus. Sensitivity to olfactory cues appeared to be highly specific as all carabid species discriminated between the olfactory cues of imbibed brassicaceous weed seeds, but did not discriminate between weed seeds that were unimbibed. Overall, our data suggest that depending on seed physiological state, odours can play an important role in the ability of carabids to find and recognize seeds of particular weed species.

]]>
<![CDATA[Multi-Phase US Spread and Habitat Switching of a Post-Columbian Invasive, Sorghum halepense]]> https://www.researchpad.co/article/5989db02ab0ee8fa60bc6e61

Johnsongrass (Sorghum halepense) is a striking example of a post-Columbian founder event. This natural experiment within ecological time-scales provides a unique opportunity for understanding patterns of continent-wide genetic diversity following range expansion. Microsatellite markers were used for population genetic analyses including leaf-optimized Neighbor-Joining tree, pairwise FST, mismatch analysis, principle coordinate analysis, Tajima’s D, Fu’s F and Bayesian clusterings of population structure. Evidence indicates two geographically distant introductions of divergent genotypes, which spread across much of the US in <200 years. Based on geophylogeny, gene flow patterns can be inferred to have involved five phases. Centers of genetic diversity have shifted from two introduction sites separated by ~2000 miles toward the middle of the range, consistent with admixture between genotypes from the respective introductions. Genotyping provides evidence for a ‘habitat switch’ from agricultural to non-agricultural systems and may contribute to both Johnsongrass ubiquity and aggressiveness. Despite lower and more structured diversity at the invasion front, Johnsongrass continues to advance northward into cooler and drier habitats. Association genetic approaches may permit identification of alleles contributing to the habitat switch or other traits important to weed/invasive management and/or crop improvement.

]]>
<![CDATA[Risk Factors for Bunyavirus-Associated Severe Fever with Thrombocytopenia Syndrome: A Community-Based Case-Control Study]]> https://www.researchpad.co/article/5989da8eab0ee8fa60b9f23b

Background

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus. Previous studies about risk factors for SFTSV infection have yielded inconsistent results, and behavior factors have not been fully clarified.

Methods

A community-based, 1:4 matched case-control study was carried out to investigate the risk factors for SFTS in China. Cases of SFTS were defined as laboratory-confirmed cases that tested positive for real-time PCR (RT-PCR) for severe fever with thrombocytopenia syndrome bunyavirus (SFTSV) or positive for IgM antibodies against SFTSV. Controls of four neighborhood subjects were selected by matching for sex, age, and occupation. Standardized questionnaires were used to collect detailed information about their demographics and risk factors for SFTSV infection.

Results

A total of 334 subjects participated in the study including 69 cases and 265 controls. The median age of the cases was 59.5 years, 55.1% were male, and 87.0% were farmers. No differences in demographics were observed between cases and controls. In the final multivariate analysis, tick bites two weeks prior to disease onset (OR = 8.04, 95%CI 3.34–19.37) and the presence of weeds and shrubs around the house (OR = 3.46, 95%CI 0.96–12.46) were found to be risk factors for SFTSV infection; taking preventative measures during outdoor activities (OR = 0.12, 95%CI 0.01–1.01) provided greater protection from SFTSV infection.

Conclusions

Our results further confirm that SFTSV is transmitted by tick bites and prove that preventative measures that reduce exposure to ticks can prevent SFTSV infection. More efforts should be directed toward health education and behavior change for high-risk populations, especially outdoor workers, in SFTS endemic areas.

]]>
<![CDATA[Multiple-Herbicide Resistance Is Widespread in Roadside Palmer Amaranth Populations]]> https://www.researchpad.co/article/5989da8aab0ee8fa60b9dba7

Herbicide-resistant Palmer amaranth is a widespread issue in row-crop production in the Midsouthern US. Palmer amaranth is commonly found on roadside habitats in this region, but little is known on the degree of herbicide resistance in these populations. Herbicide resistance in roadside Palmer amaranth populations can represent the spread of an adaptive trait across a selective landscape. A large-scale survey was carried out in the Mississippi Delta region of eastern Arkansas to document the level of resistance in roadside Palmer amaranth populations to pyrithiobac and glyphosate, two important herbicides with broad history of use in the region. A total of 215 Palmer amaranth populations collected across 500 random survey sites were used in the evaluations. About 89 and 73% of the surveyed populations showed >90% survival to pyrithiobac and glyphosate, respectively. Further, only 3% of the populations were completely susceptible to glyphosate, while none of the populations was completely controlled by pyrithiobac. Among the 215 populations evaluated, 209 populations showed multiple resistance to both pyrithiobac and glyphosate at varying degrees. Dose-response assays confirmed the presence of high levels of herbicide resistance in the five selected populations (≥ 25-fold compared to a susceptible standard). Results demonstrate the prevalence of multiple-herbicide resistance in roadside Palmer amaranth populations in this region. Growers should be vigilant of Palmer amaranth infestation in roadsides adjacent to their fields and implement appropriate control measures to prevent likely spread of herbicide resistance into their fields.

]]>
<![CDATA[Cover crop mixture diversity, biomass productivity, weed suppression, and stability]]> https://www.researchpad.co/article/5c9405b0d5eed0c484538fe1

The diversity-productivity, diversity-invasibility, and diversity-stability hypotheses propose that increasing species diversity should lead, respectively, to increased average biomass productivity, invasion resistance, and stability. We tested these three hypotheses in the context of cover crop mixtures, evaluating the effects of increasing cover crop mixture diversity on aboveground biomass, weed suppression, and biomass stability. Twenty to forty cover crop treatments were replicated three or four times at eleven sites using eighteen species representing three cover crop species each from six pre-defined functional groups: cool-season grasses, cool-season legumes, cool-season brassicas, warm-season grasses, warm-season legumes, and warm-season broadleaves. Each species was seeded as a pure stand, and the most diverse treatment contained all eighteen species. Remaining treatments included treatments representing intermediate levels of cover crop species and functional richness and a no cover crop control. Cover crop seeding dates ranged from late July to late September with both cover crop and weed aboveground biomass being sampled prior to winterkill. Stability was assessed by evaluating the variability in cover crop biomass for each treatment across plots within each site. While increasing cover crop mixture diversity was associated with increased average aboveground biomass, we assert that this was the result of the average biomass of the pure stands being drawn down by low biomass species rather than due to niche complementarity or increased resource use efficiency. At no site did the highest biomass mixture produce more than the highest biomass pure stand. Furthermore, while increases in cover crop mixture diversity were correlated with increases in weed suppression and biomass stability, we argue that this was largely the result of diversity co-varying with aboveground biomass, and that differences in aboveground biomass rather than differences in diversity drove the differences observed in weed suppression and stability.

]]>
<![CDATA[Influence of environmental factors on Cucumis melo L. var. agrestis Naud. seed germination and seedling emergence]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be01fc

Cucumis melo L. var. agrestis Naud. (field muskmelon) is an annual invasive weed in many parts of Asia. However, there is very little available information about the germination and emergence of this species. Therefore, laboratory experiments were conducted to evaluate the effects of light, temperature, salt stress, osmotic stress, pH, and depth of planting on field muskmelon germination and seedling emergence. Light had no effect on seed germination, and the seeds germinated at a wide range of temperatures. More than 90% of the seeds germinated at constant temperatures between 20°C and 35°C, and fluctuating day/night temperatures between 15/25 and 30/40°C. The seeds were tolerant to salinity as germination occurred up to the 200 mM NaCl treatment. However, the seeds were sensitive to osmotic stress as seed germination was completely inhibited at –0.6 MPa. The seeds germinated over a pH range of 4 to 10, which suggested that pH was not a limiting factor for germination. Seedling emergence was greatest (97.86%) when the seeds were planted on the soil surface, but emergence declined as the burial depth increased. Information from this study can be used to predict future infestations in China and help develop strategies to manage this species.

]]>
<![CDATA[Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc425

Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide’s target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines.

]]>
<![CDATA[Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity]]> https://www.researchpad.co/article/5989da5aab0ee8fa60b8fa3d

Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey.

]]>
<![CDATA[To mulch or not to mulch? Effects of gravel mulch toppings on plant establishment and development in ornamental prairie plantings]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdb983

In recent years, North American prairie vegetation has served as a design model for highly attractive, low-cost and low-maintenance plantings in German urban green spaces. Where mixed-planting techniques, gravel mulch toppings and non-selective maintenance techniques such as mowing are used, prairie plantings are considered to be cost-effective alternative design concepts for public green space management. In this study, we investigated the establishment success of different mixtures of prairie species plantings on two sites with different soil conditions: topsoil and topsoil with graywacke gravel topping. We documented significantly higher average mortality rates on gravel mulch sites in the first year after establishment. Further development of mortality was not significantly different between sites. Weed species were always more numerous on topsoil sites and had an obvious effect on the visual impact of the plantings. The mulch created an effective barrier for wind-dispersed germinators. Soil temperatures down to 30 cm were significantly higher on gravel mulch sites throughout the year, stimulating more vital plant growth and a prolonged growing season. Our results emphasize the importance of considering these kinds of practical issues during the planning process as they are critical to the success or failure of the design.

]]>