ResearchPad - woodpeckers Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Development and evaluation of habitat suitability models for nesting white-headed woodpecker (<i>Dryobates albolarvatus</i>) in burned forest]]> Salvage logging in burned forests can negatively affect habitat for white-headed woodpeckers (Dryobates albolarvatus), a species of conservation concern, but also meets socioeconomic demands for timber and human safety. Habitat suitability index (HSI) models can inform forest management activities to help meet habitat conservation objectives. Informing post-fire forest management, however, involves model application at new locations as wildfires occur, requiring evaluation of predictive performance across locations. We developed HSI models for white-headed woodpeckers using nest sites from two burned-forest locations in Oregon, the Toolbox (2002) and Canyon Creek (2015) fires. We measured predictive performance by developing one model at each of the two locations and quantifying discrimination of nest from reference sites at two other wildfire locations where the model had not been developed (either Toolbox or Canyon Creek, and the Barry Point Fire [2011]). We developed and evaluated Maxent models based on remotely sensed environmental metrics to support habitat mapping, and weighted logistic regression (WLR) models that combined remotely sensed and field-collected metrics to inform management prescriptions. Both Maxent and WLR models developed either at Canyon Creek or Toolbox performed adequately to inform management when applied at the alternate Toolbox or Canyon Creek location, respectively (area under the receiver-operating-characteristic curve [AUC] range = 0.61–0.72) but poorly when applied at Barry Point (AUC = 0.53–0.57). The final HSI models fitted to Toolbox and Canyon Creek data quantified suitable nesting habitat as severely burned or open sites adjacent to lower severity and closed canopy sites, where foraging presumably occurs. We suggest these models are applicable at locations similar to development locations but not at locations resembling Barry Point, which were characterized by more (pre-fire) canopy openings, larger diameter trees, less ponderosa pine (Pinus ponderosa), and more juniper (Juniperus occidentalis). Considering our results, we recommend caution when applying HSI models developed at individual wildfire locations to inform post-fire management at new locations without first evaluating predictive performance.