ResearchPad - yellow-fever https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Inferring the immune response from repertoire sequencing]]> https://www.researchpad.co/article/elastic_article_7765 High-throughput immune repertoire sequencing (RepSeq) experiments are becoming a common way to study the diversity, structure and composition of lymphocyte repertoires, promising to yield unique insight into individuals’ past infection history. However, the analysis of these sequences remains challenging, especially when comparing two different temporal or tissue samples. Here we develop a new theoretical approach and methodology to extract the characteristics of the lymphocyte repertoire response from different samples. The method is specifically tailored to RepSeq experiments and accounts for the multiple sources of noise present in these experiments. Its output provides expansion parameters, as well as a list of potentially responding clonotypes. We apply the method to describe the response to yellow fever vaccine obtained from samples taken at different time points. We also use our results to estimate the diversity and clone size statistics from data.

]]>
<![CDATA[Assessing the risk of autochthonous yellow fever transmission in Lazio, central Italy]]> https://www.researchpad.co/article/5c40f80dd5eed0c484386f28 ]]> <![CDATA[<i>PLoS Biology</i> Issue Image | Vol. 17(1) January 2019]]> https://www.researchpad.co/article/5c5ca274d5eed0c48441e400

Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes

Mosquito-borne pathogens infect millions of people worldwide, and the rise in insecticide resistance is exacerbating this problem. A new generation of environmentally safe insecticides will be essential to control insecticide-resistant mosquitoes. One potential route to such novel insecticide targets is the identification of proteins specifically needed for mosquito reproduction. Using RNA interference to screen mosquito-specific genes in Aedes aegypti (the mosquito that transmits yellow fever), Isoe et al. identified the eggshell organizing factor 1 (EOF1) protein as playing an essential role in eggshell melanization and embryonic development. Nearly 100% of the eggs laid by EOF1-deficient females had a defective eggshell and were non-viable. Additional experiments revealed that EOF1 also plays an essential role in eggshell formation in Aedes albopictus, a carrier of Zika virus and dengue fever. The image shows a scanning electron micrograph of a small region (about 20 µm across) of the shell from a normal Aedes aegypti egg.

Image Credit: pbio.3000068

]]>
<![CDATA[Urban yellow fever outbreak—Democratic Republic of the Congo, 2016: Towards more rapid case detection]]> https://www.researchpad.co/article/5c141e6fd5eed0c484d2694b

Background

Between December 2015 and July 2016, a yellow fever (YF) outbreak affected urban areas of Angola and the Democratic Republic of the Congo (DRC). We described the outbreak in DRC and assessed the accuracy of the YF case definition, to facilitate early diagnosis of cases in future urban outbreaks.

Methodology/Principal findings

In DRC, suspected YF infection was defined as jaundice within 2 weeks after acute fever onset and was confirmed by either IgM serology or PCR for YF viral RNA. We used case investigation and hospital admission forms. Comparing clinical signs between confirmed and discarded suspected YF cases, we calculated the predictive values of each sign for confirmed YF and the diagnostic accuracy of several suspected YF case definitions. Fifty seven of 78 (73%) confirmed cases had travelled from Angola: 88% (50/57) men; median age 31 years (IQR 25–37). 15 (19%) confirmed cases were infected locally in urban settings in DRC. Median time from symptom onset to healthcare consultation was 7 days (IQR 6–9), to appearance of jaundice 8 days (IQR 7–11), to sample collection 9 days (IQR 7–14), and to hospitalization 17 days (IQR 11–26). A case definition including fever or jaundice, combined with myalgia or a negative malaria test, yielded an improved sensitivity (100%) and specificity (57%).

Conclusions/Significance

As jaundice appeared late, the majority of cases were diagnosed too late for supportive care and prompt vector control. In areas with known local YF transmission, a suspected case definition without jaundice as essential criterion could facilitate earlier YF diagnosis, care and control.

]]>
<![CDATA[Regulatory T cell frequencies and phenotypes following anti-viral vaccination]]> https://www.researchpad.co/article/5989db5fab0ee8fa60be1281

Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity.

In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg) and activated (aTreg) subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization.

Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication.

To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen.

Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation of Treg frequencies and phenotypes following vaccination.

]]>
<![CDATA[The Kinase Inhibitor SFV785 Dislocates Dengue Virus Envelope Protein from the Replication Complex and Blocks Virus Assembly]]> https://www.researchpad.co/article/5989d9f6ab0ee8fa60b70554

Dengue virus (DENV) is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and describe here the characterization of a kinase inhibitor (SFV785), which has selective effects on NTRK1 and MAPKAPK5 kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex. Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785 inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to explore the DENV lifecycle and could also represent a new class of anti-virals.

]]>
<![CDATA[Yellow Fever Virus DNA in Urine and Semen of Convalescent Patient, Brazil]]> https://www.researchpad.co/article/5bf2ebcdd5eed0c48425abd5

Yellow fever virus RNA is usually detected in blood of infected humans. We detected virus RNA in urine and semen samples from a convalescent patient. A complete virus genome was sequenced for an isolate from a urine sample. This virus had a South American I genotype and unique synapomorphic changes.

]]>
<![CDATA[A Flow Cytometry-Based Assay for Quantifying Non-Plaque Forming Strains of Yellow Fever Virus]]> https://www.researchpad.co/article/5989d9faab0ee8fa60b71c09

Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE) on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar) could not be measured by plaque assay (PA), focus-forming assay (FFA), or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6) and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA) to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine). Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses.

]]>
<![CDATA[A Broadly Flavivirus Cross-Neutralizing Monoclonal Antibody that Recognizes a Novel Epitope within the Fusion Loop of E Protein]]> https://www.researchpad.co/article/5989dab1ab0ee8fa60bab6c9

Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1–4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the 98DRXW101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1–4, YFV, and WNV and confers protection from lethal challenge with DENV 1–4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans.

]]>
<![CDATA[Elderly Subjects Have a Delayed Antibody Response and Prolonged Viraemia following Yellow Fever Vaccination: A Prospective Controlled Cohort Study]]> https://www.researchpad.co/article/5989dac8ab0ee8fa60bb31db

Background

Yellow fever vaccination (YF-17D) can cause serious adverse events (SAEs). The mechanism of these SAEs is poorly understood. Older age has been identified as a risk factor. We tested the hypothesis that the humoral immune response to yellow fever vaccine develops more slowly in elderly than in younger subjects.

Method

We vaccinated young volunteers (18–28 yrs, N = 30) and elderly travelers (60–81 yrs, N = 28) with YF-17D and measured their neutralizing antibody titers and plasma YF-17D RNA copy numbers before vaccination and 3, 5, 10, 14 and 28 days after vaccination.

Results

Ten days after vaccination seroprotection was attained by 77% (23/30) of the young participants and by 50% (14/28) of the elderly participants (p = 0.03). Accordingly, the Geometric Mean Titer of younger participants was higher than the GMT of the elderly participants. At day 10 the difference was +2.9 IU/ml (95% CI 1.8–4.7, p = 0.00004) and at day 14 +1.8 IU/ml (95% CI 1.1–2.9, p = 0.02, using a mixed linear model. Viraemia was more common in the elderly (86%, 24/28) than in the younger participants (60%, 14/30) (p = 0.03) with higher YF-17D RNA copy numbers in the elderly participants.

Conclusions

We found that elderly subjects had a delayed antibody response and higher viraemia levels after yellow fever primovaccination. We postulate that with older age, a weaker immune response to yellow fever vaccine allows the attenuated virus to cause higher viraemia levels which may increase the risk of developing SAEs. This may be one piece in the puzzle of the pathophysiology of YEL-AVD.

Trial Registration

Trialregitser.nl NTR1040

]]>
<![CDATA[Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti]]> https://www.researchpad.co/article/5989dae5ab0ee8fa60bbd402

Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

]]>
<![CDATA[Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength]]> https://www.researchpad.co/article/5989dab5ab0ee8fa60bacc33

Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, KD, stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had KD below 100 nM and the peptides with KD below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had KD below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response.

]]>
<![CDATA[The Incubation Periods of Dengue Viruses]]> https://www.researchpad.co/article/5989d9d6ab0ee8fa60b65e75

Dengue viruses are major contributors to illness and death globally. Here we analyze the extrinsic and intrinsic incubation periods (EIP and IIP), in the mosquito and human, respectively. We identified 146 EIP observations from 8 studies and 204 IIP observations from 35 studies. These data were fitted with censored Bayesian time-to-event models. The best-fitting temperature-dependent EIP model estimated that 95% of EIPs are between 5 and 33 days at 25°C, and 2 and 15 days at 30°C, with means of 15 and 6.5 days, respectively. The mean IIP estimate was 5.9 days, with 95% expected between days 3 and 10. Differences between serotypes were not identified for either incubation period. These incubation period models should be useful in clinical diagnosis, outbreak investigation, prevention and control efforts, and mathematical modeling of dengue virus transmission.

]]>
<![CDATA[Yellow Fever—More a Policy and Planning Problem than a Biological One]]> https://www.researchpad.co/article/5bd0201540307c4bb55ef743 ]]> <![CDATA[Pathophysiologic and Transcriptomic Analyses of Viscerotropic Yellow Fever in a Rhesus Macaque Model]]> https://www.researchpad.co/article/5989da3fab0ee8fa60b89331

Infection with yellow fever virus (YFV), an explosively replicating flavivirus, results in viral hemorrhagic disease characterized by cardiovascular shock and multi-organ failure. Unvaccinated populations experience 20 to 50% fatality. Few studies have examined the pathophysiological changes that occur in humans during YFV infection due to the sporadic nature and remote locations of outbreaks. Rhesus macaques are highly susceptible to YFV infection, providing a robust animal model to investigate host-pathogen interactions. In this study, we characterized disease progression as well as alterations in immune system homeostasis, cytokine production and gene expression in rhesus macaques infected with the virulent YFV strain DakH1279 (YFV-DakH1279). Following infection, YFV-DakH1279 replicated to high titers resulting in viscerotropic disease with ∼72% mortality. Data presented in this manuscript demonstrate for the first time that lethal YFV infection results in profound lymphopenia that precedes the hallmark changes in liver enzymes and that although tissue damage was noted in liver, kidneys, and lymphoid tissues, viral antigen was only detected in the liver. These observations suggest that additional tissue damage could be due to indirect effects of viral replication. Indeed, circulating levels of several cytokines peaked shortly before euthanasia. Our study also includes the first description of YFV-DakH1279-induced changes in gene expression within peripheral blood mononuclear cells 3 days post-infection prior to any clinical signs. These data show that infection with wild type YFV-DakH1279 or live-attenuated vaccine strain YFV-17D, resulted in 765 and 46 differentially expressed genes (DEGs), respectively. DEGs detected after YFV-17D infection were mostly associated with innate immunity, whereas YFV-DakH1279 infection resulted in dysregulation of genes associated with the development of immune response, ion metabolism, and apoptosis. Therefore, WT-YFV infection is associated with significant changes in gene expression that are detectable before the onset of clinical symptoms and may influence disease progression and outcome of infection.

]]>
<![CDATA[17DD and 17D-213/77 Yellow Fever Substrains Trigger a Balanced Cytokine Profile in Primary Vaccinated Children]]> https://www.researchpad.co/article/5989da2dab0ee8fa60b83376

Background

This study aimed to compare the cytokine-mediated immune response in children submitted to primary vaccination with the YF-17D-213/77 or YF-17DD yellow fever (YF) substrains.

Methods

A non-probabilistic sample of eighty healthy primary vaccinated (PV) children was selected on the basis of their previously known humoral immune response to the YF vaccines. The selected children were categorized according to their YF-neutralizing antibody titers (PRNT) and referred to as seroconverters (PV-PRNT+) or nonseroconverters (PV-PRNT). Following revaccination with the YF-17DD, the PV-PRNT children (YF-17D-213/77 and YF-17DD groups) seroconverted and were referred as RV-PRNT+. The cytokine-mediated immune response was investigated after short-term in vitro cultures of whole blood samples. The results are expressed as frequency of high cytokine producers, taking the global median of the cytokine index (YF-Ag/control) as the cut-off.

Results

The YF-17D-213/77 and the YF-17DD substrains triggered a balanced overall inflammatory/regulatory cytokine pattern in PV-PRNT+, with a slight predominance of IL-12 in YF-17DD vaccinees and a modest prevalence of IL-10 in YF-17D-213/77. Prominent frequency of neutrophil-derived TNF-α and neutrophils and monocyte-producing IL-12 were the major features of PV-PRNT+ in the YF-17DD, whereas relevant inflammatory response, mediated by IL-12+CD8+ T cells, was the hallmark of the YF-17D-213/77 vaccinees. Both substrains were able to elicit particular but relevant inflammatory events, regardless of the anti-YF PRNT antibody levels. PV-PRNT children belonging to the YF-17DD arm presented gaps in the inflammatory cytokine signature, especially in terms of the innate immunity, whereas in the YF-17D-213/77 arm the most relevant gap was the deficiency of IL-12-producing CD8+T cells. Revaccination with YF-17DD prompted a balanced cytokine profile in YF-17DD nonresponders and a robust inflammatory profile in YF-17D-213/77 nonresponders.

Conclusion

Our findings demonstrated that, just like the YF-17DD reference vaccine, the YF-17D-213/77 seed lot induced a mixed pattern of inflammatory and regulatory cytokines, supporting its universal use for immunization.

]]>
<![CDATA[Kinetic Study of Yellow Fever 17DD Viral Infection in Gallus gallus domesticus Embryos]]> https://www.researchpad.co/article/5989dabbab0ee8fa60baebf5

Yellow fever continues to be an important epidemiological problem in Africa and South America even though the disease can be controlled by vaccination. The vaccine has been produced since 1937 and is based on YFV 17DD chicken embryo infection. However, little is known about the histopathological background of virus infection and replication in this model. Here we show by morphological and molecular methods (brightfield and confocal microscopies, immunofluorescence, nested-PCR and sequencing) the kinetics of YFV 17DD infection in chicken embryos with 9 days of development, encompassing 24 to 96 hours post infection. Our principal findings indicate that the main cells involved in virus production are myoblasts with a mesenchymal shape, which also are the first cells to express virus proteins in Gallus gallus embryos at 48 hours after infection. At 72 hours post infection, we observed an increase of infected cells in embryos. Many sites are thus affected in the infection sequence, especially the skeletal muscle. We were also able to confirm an increase of nervous system infection at 96 hours post infection. Our data contribute to the comprehension of the pathogenesis of YF 17DD virus infection in Gallus gallus embryos.

]]>
<![CDATA[A Thiopurine Drug Inhibits West Nile Virus Production in Cell Culture, but Not in Mice]]> https://www.researchpad.co/article/5989dae4ab0ee8fa60bbca32

Many viruses within the Flavivirus genus cause significant disease in humans; however, effective antivirals against these viruses are not currently available. We have previously shown that a thiopurine drug, 6-methylmercaptopurine riboside (6MMPr), inhibits replication of distantly related viruses within the Flaviviridae family in cell culture, including bovine viral diarrhea virus and hepatitis C virus replicon. Here we further examined the potential antiviral effect of 6MMPr on several diverse flaviviruses. In cell culture, 6MMPr inhibited virus production of yellow fever virus, dengue virus-2 (DENV-2) and West Nile virus (WNV) in a dose-dependent manner, and DENV-2 was significantly more sensitive to 6MMPr treatment than WNV. We then explored the use of 6MMPr as an antiviral against WNV in an immunocompetent mouse model. Once a day treatment of mice with 0.5 mg 6MMPr was just below the toxic dose in our mouse model, and this dose was used in subsequent studies. Mice were treated with 6MMPr immediately after subcutaneous inoculation with WNV for eight consecutive days. Treatment with 6MMPr exacerbated weight loss in WNV-inoculated mice and did not significantly affect mortality. We hypothesized that 6MMPr has low bioavailability in the central nervous system (CNS) and examined the effect of pre-treatment with 6MMPr on viral loads in the periphery and CNS. Pre-treatment with 6MMPr had no significant effect on viremia or viral titers in the periphery, but resulted in significantly higher viral loads in the brain, suggesting that the effect of 6MMPr is tissue-dependent. In conclusion, despite being a potent inhibitor of flaviviruses in cell culture, 6MMPr was not effective against West Nile disease in mice; however, further studies are warranted to reduce the toxicity and/or improve the bioavailability of this potential antiviral drug.

]]>
<![CDATA[Dengue Fever Occurrence and Vector Detection by Larval Survey, Ovitrap and MosquiTRAP: A Space-Time Clusters Analysis]]> https://www.researchpad.co/article/5989daefab0ee8fa60bc08fd

The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools.

]]>
<![CDATA[Zika in the United States of America and a Fateful 1969 Decision]]> https://www.researchpad.co/article/5989da9cab0ee8fa60ba43da

The United States Gulf Coast’s current risk to Zika transmitted by Aedes aegypti mosquitoes can be traced back to some important federal health policy decisions made during the 1960s.

]]>