ResearchPad - zooplankton https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Micro- and mesozooplankton successions in an Antarctic coastal environment during a warm year]]> https://www.researchpad.co/article/elastic_article_14619 The rapid increase in atmospheric temperature detected in the last decades in the Western Antarctic Peninsula was accompanied by a strong glacier retreat and an increase in production of melting water, as well as changes in the sea-ice dynamic. The objective of this study was to analyze the succession of micro- and mesozooplankton during a warm annual cycle (December 2010-December 2011) in an Antarctic coastal environment (Potter Cove). The biomass of zooplankton body size classes was used to predict predator-prey size relationships (i.e., to test bottom-up/top-down control effects) using a Multiple Linear Regression Analysis. The micro- and mesozooplanktonic successions were graphically analyzed to detect the influence of environmental periods (defined by the degree of glacial melting, sea-ice freezing and sea-ice melting) on coupling/uncoupling planktonic biomass curves associated to possible predator-prey size relationship scenarios. At the beginning of the glacial melting, medium and large mesozooplankton (calanoid copepods, Euphausia superba, and Salpa thompsoni) exert a top-down control on Chl-a and microzooplankton. Stratification of the water column benefitted the availability of adequate food-size (Chl-a <20) for large microzooplankton (tintinnids) development observed during fall. High abundance of omnivores mesozooplankton (Oithona similis and furcilia of E. superba) during sea-ice freezing periods would be due to the presence of available heterotrophic food under or within the sea ice. Finally, the increase in microzooplankton abundance in the middle of spring, when sea-ice melting starts, corresponded to small and medium dinoflagellates and ciliates species, which were possibly part of the biota of sea ice. If glacier retreat continues and the duration and thickness of the sea ice layer fluctuates as predicted by climate models, our results predict a future scenario regarding the zooplankton succession in Antarctic coastal environments.

]]>
<![CDATA[Large-scale metabarcoding analysis of epipelagic and mesopelagic copepods in the Pacific]]> https://www.researchpad.co/article/elastic_article_14565 A clear insight into the large-scale community structure of planktonic copepods is critical to understanding the mechanisms controlling diversity and biogeography of marine taxa in terms of their high abundance, ubiquity, and sensitivity to environmental changes. Here, we applied a 28S metabarcoding approach to large-scale communities of epipelagic and mesopelagic copepods at 70 stations across the Pacific Ocean and three stations in the Arctic Ocean. Major patterns of community structure and diversity, influenced by water mass structures, agreed with results from previous morphology-based studies. However, a large-scale metabarcoding approach could detect community changes even under stable environmental conditions, including changes in the north/south subtropical gyres and east/west areas within each subtropical gyre. There were strong effects of the epipelagic environment on mesopelagic communities, and community subdivisions were observed in the environmentally stable mesopelagic layer. In each sampling station, higher operational taxonomic unit (OTU) numbers and lower phylogenetic diversity were observed in the mesopelagic layer than in the epipelagic layer, indicating a recent rapid increase in species numbers in the mesopelagic layer. The phylogenetic analysis utilizing representative sequences of OTUs revealed trends of recent emergence of cold-water OTUs, which are mainly distributed at high latitudes with low water temperatures. Conversely, the high diversity of copepods at low latitudes was suggested to have been formed through long evolution under high water temperature conditions. The metabarcoding results suggest that evolutionary processes have strong impacts on current patterns of copepod diversity, and support the “out of the tropics” theory explaining latitudinal diversity gradients of copepods. Diversity patterns in both epipelagic and mesopelagic copepods was highly correlated to sea surface temperature; thus, predicted global warming may have a significant impact on copepod diversity in both layers.

]]>
<![CDATA[Short-term fish predation destroys resilience of zooplankton communities and prevents recovery of phytoplankton control by zooplankton grazing]]> https://www.researchpad.co/article/5c706772d5eed0c4847c7038

Planktivorous fish predation directly affects zooplankton biomass, community and size structure, and may indirectly induce a trophic cascade to phytoplankton. However, it is not clear how quickly the zooplankton community structure and the cascading effects on phytoplankton recover to the unaffected state (i.e. resilience) once short-term predation by fish stops. The resilience has implications for the ecological quality and restoration measures in aquatic ecosystems. To assess the short-term zooplankton resilience against fish predation, we conducted a mesocosm experiment consisting of 10 enclosures, 6 with fish and 4 without fish. Plankton communities from a natural lake were used to establish phytoplankton and zooplankton in the mesocosms. High biomasses (about 20 g wet mass m-3) of juvenile planktivorous fish (perch, Perca fluviatilis) were allowed to feed on zooplankton in fish enclosures for four days. Thereafter, we removed fish and observed the recovery of the zooplankton community and its cascading effect on trophic interactions in comparison with no fish enclosures for four weeks. Short-term fish predation impaired resilience in zooplankton community by modifying community composition, as large zooplankton, such as calanoids, decreased just after fish predation and did not re-appear afterwards, whereas small cladocerans and rotifers proliferated. Total zooplankton biomass increased quickly within two weeks after fish removal, and at the end even exceeded the biomass measured before fish addition. Despite high biomass, the dominance of small zooplankton released phytoplankton from grazer control in fish enclosures. Accordingly, the zooplankton community did not recover from the effect of fish predation, indicating low short-term resilience. In contrast, in no fish enclosures without predation disturbance, a high zooplankton:phytoplankton biomass ratio accompanied by low phytoplankton yield (Chlorophyll-a:Total phosphorus ratio) reflected phytoplankton control by zooplankton over the experimental period. Comprehensive views on short and long-term resilience of zooplankton communities are essential for restoration and management strategies of aquatic ecosystems to better predict responses to global warming, such as higher densities of planktivorous fish.

]]>
<![CDATA[Microplastic-mediated transport of PCBs? A depuration study with Daphnia magna]]> https://www.researchpad.co/article/5c75ac14d5eed0c484d0811f

The role of microplastic (MP) as a carrier of persistent organic pollutants (POPs) to aquatic organisms has been a topic of debate. However, the reverse POP transport can occur if relative contaminant concentrations are higher in the organism than in the microplastic. We evaluated the effect of microplastic on the PCB removal in planktonic animals by exposing the cladoceran Daphnia magna with a high body burden of polychlorinated biphenyls (PCB 18, 40, 128 and 209) to a mixture of microplastic and algae; daphnids exposed to only algae served as the control. As the endpoints, we used PCB body burden, growth, fecundity and elemental composition (%C and %N) of the daphnids. In the daphnids fed with microplastic, PCB 209 was removed more efficiently, while there was no difference for any other congeners and ΣPCBs between the microplastic-exposed and control animals. Also, higher size-specific egg production in the animals carrying PCB and receiving food mixed with microplastics was observed. However, the effects of the microplastic exposure on fecundity were of low biological significance, because the PCB body burden and the microplastic exposure concentrations were greatly exceeding environmentally relevant concentrations.

]]>
<![CDATA[Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species]]> https://www.researchpad.co/article/5c673075d5eed0c484f37b80

Using end-to-end models for ecosystem-based management requires knowledge of the structure, uncertainty and sensitivity of the model. The Norwegian and Barents Seas (NoBa) Atlantis model was implemented for use in ‘what if’ scenarios, combining fisheries management strategies with the influences of climate change and climate variability. Before being used for this purpose, we wanted to evaluate and identify sensitive parameters and whether the species position in the foodweb influenced their sensitivity to parameter perturbation. Perturbing recruitment, mortality, prey consumption and growth by +/- 25% for nine biomass-dominating key species in the Barents Sea, while keeping the physical climate constant, proved the growth rate to be the most sensitive parameter in the model. Their trophic position in the ecosystem (lower trophic level, mid trophic level, top predators) influenced their responses to the perturbations. Top-predators, being generalists, responded mostly to perturbations on their individual life-history parameters. Mid-level species were the most vulnerable to perturbations, not only to their own individual life-history parameters, but also to perturbations on other trophic levels (higher or lower). Perturbations on the lower trophic levels had by far the strongest impact on the system, resulting in biomass changes for nearly all components in the system. Combined perturbations often resulted in non-additive model responses, including both dampened effects and increased impact of combined perturbations. Identifying sensitive parameters and species in end-to-end models will not only provide insights about the structure and functioning of the ecosystem in the model, but also highlight areas where more information and research would be useful—both for model parameterization, but also for constraining or quantifying model uncertainty.

]]>
<![CDATA[Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events]]> https://www.researchpad.co/article/5c6730a5d5eed0c484f37e31

Marine ecosystems are changing rapidly as the oceans warm and become more acidic. The physical factors and the changes to ocean chemistry that they drive can all be measured with great precision. Changes in the biological composition of communities in different ocean regions are far more challenging to measure because most biological monitoring methods focus on a limited taxonomic or size range. Environmental DNA (eDNA) analysis has the potential to solve this problem in biological oceanography, as it is capable of identifying a huge phylogenetic range of organisms to species level. Here we develop and apply a novel multi-gene molecular toolkit to eDNA isolated from bulk plankton samples collected over a five-year period from a single site. This temporal scale and level of detail is unprecedented in eDNA studies. We identified consistent seasonal assemblages of zooplankton species, which demonstrates the ability of our toolkit to audit community composition. We were also able to detect clear departures from the regular seasonal patterns that occurred during an extreme marine heatwave. The integration of eDNA analyses with existing biotic and abiotic surveys delivers a powerful new long-term approach to monitoring the health of our world’s oceans in the context of a rapidly changing climate.

]]>
<![CDATA[Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model]]> https://www.researchpad.co/article/5c521879d5eed0c484798772

The Gulf of Mexico is an ecologically and economically important marine ecosystem that is affected by a variety of natural and anthropogenic pressures. These complex and interacting pressures, together with the dynamic environment of the Gulf, present challenges for the effective management of its resources. The recent adoption of Bayesian networks to ecology allows for the discovery and quantification of complex interactions from data after making only a few assumptions about observations of the system. In this study, we apply Bayesian network models, with different levels of structural complexity and a varying number of hidden variables to account for uncertainty when modeling ecosystem dynamics. From these models, we predict focal ecosystem components within the Gulf of Mexico. The predictive ability of the models varied with their structure. The model that performed best was parameterized through data-driven learning techniques and accounted for multiple ecosystem components’ associations and their interactions with human and natural pressures over time. Then, we altered sea surface temperature in the best performing model to explore the response of different ecosystem components to increased temperature. The magnitude and even direction of predicted responses varied by ecosystem components due to heterogeneity in driving factors and their spatial overlap. Our findings suggest that due to varying components’ sensitivity to drivers, changes in temperature will potentially lead to trade-offs in terms of population productivity. We were able to discover meaningful interactions between ecosystem components and their environment and show how sensitive these relationships are to climate perturbations, which increases our understanding of the potential future response of the system to increasing temperature. Our findings demonstrate that accounting for additional sources of variation, by incorporating multiple interactions and pressures in the model layout, has the potential for gaining deeper insights into the structure and dynamics of ecosystems.

]]>
<![CDATA[Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey–predator interactions in the grazing food web of the marine ecosystem]]> https://www.researchpad.co/article/5c3fa552d5eed0c484ca3048

Labyrinthuleans (Labyrinthulea, Stramenopiles) are recognized as decomposers in marine ecosystems but their nutrient sources are not fully understood. We conducted two-membered culture experiments with labyrinthuleans and diatoms to discover where labyrinthuleans obtain their nutrients from. The results showed that Aplanochytrium strains obtained nutrients by consuming living diatoms. Aplanochytrium cells did not release digestive enzymes into the medium, but adhered to diatom cells via the tip of their characteristic ectoplasmic net system to obtain nutrients from them. The chloroplast and cell contents of the diatoms shrank and were absorbed, and then the number of Aplanochytrium cells rapidly increased as multiple aplanospores were released. To estimate the effect of labyrinthulean organisms including Aplanochytrium on marine ecosystem, we explored the dataset generated by the Tara Oceans Project from a wide range of oceanic regions. The average proportion of all labyrinthulean sequences to diatom sequences at each station was about 10%, and labyrinthulids, oblongichytrids, and aplanochytrids were the major constituent genera, accounting for more than 80% of labyrinthuleans. Therefore, these groups are suggested to greatly affect the marine ecosystem. There were positive correlations between aplanochytrids and phototrophs, green algae, and diatoms. At many stations, relatively large proportions of aplanochytrid sequences were detected in the size fraction larger than their cell size. This implied that Aplanochytrium cells increased their particle size by adhering to each other and forming aggregates with diatoms that are captured by larger zooplankton in the environment, thereby bypassing the food web pathway via aplanochytrids to higher predators. The intake of nutrients from diatoms by aplanochytrids represents a newly recognized pathway in the grazing food chain in the marine ecosystem.

]]>
<![CDATA[Effects of Whaling on the Structure of the Southern Ocean Food Web: Insights on the “Krill Surplus” from Ecosystem Modelling]]> https://www.researchpad.co/article/5989dac4ab0ee8fa60bb1e5b

The aim of this study was to examine the ecological plausibility of the “krill surplus” hypothesis and the effects of whaling on the Southern Ocean food web using mass-balance ecosystem modelling. The depletion trajectory and unexploited biomass of each rorqual population in the Antarctic was reconstructed using yearly catch records and a set of species-specific surplus production models. The resulting estimates of the unexploited biomass of Antarctic rorquals were used to construct an Ecopath model of the Southern Ocean food web existing in 1900. The rorqual depletion trajectory was then used in an Ecosim scenario to drive rorqual biomasses and examine the “krill surplus” phenomenon and whaling effects on the food web in the years 1900–2008. An additional suite of Ecosim scenarios reflecting several hypothetical trends in Southern Ocean primary productivity were employed to examine the effect of bottom-up forcing on the documented krill biomass trend. The output of the Ecosim scenarios indicated that while the “krill surplus” hypothesis is a plausible explanation of the biomass trends observed in some penguin and pinniped species in the mid-20th century, the excess krill biomass was most likely eliminated by a rapid decline in primary productivity in the years 1975–1995. Our findings suggest that changes in physical conditions in the Southern Ocean during this time period could have eliminated the ecological effects of rorqual depletion, although the mechanism responsible is currently unknown. Furthermore, a decline in iron bioavailability due to rorqual depletion may have contributed to the rapid decline in overall Southern Ocean productivity during the last quarter of the 20th century. The results of this study underscore the need for further research on historical changes in the roles of top-down and bottom-up forcing in structuring the Southern Ocean food web.

]]>
<![CDATA[Floodplain farm fields provide novel rearing habitat for Chinook salmon]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be0414

When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon.

]]>
<![CDATA[Macrophytes shape trophic niche variation among generalist fishes]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf68b

Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall food-web structures in lake ecosystems.

]]>
<![CDATA[The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdce0e

Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

]]>
<![CDATA[Responses of Phyto- and Zooplankton Communities to Prymnesium polylepis (Prymnesiales) Bloom in the Baltic Sea]]> https://www.researchpad.co/article/5989dab6ab0ee8fa60bacdb3

A large bloom of Prymnesium polylepis occurred in the Baltic Sea during the winter 2007 – spring 2008. Based on numerous reports of strong allelopathic effects on phytoplankton exerted by P. polylepis and its toxicity to grazers, we hypothesized that during this period negative correlations will be observed between P. polylepis and (1) main phytoplankton groups contributing to the spring bloom (i.e., diatoms and dinoflagellates), and (2) zooplankton growth and abundance. To test these hypotheses, we analyzed inter-annual variability in phytoplankton and zooplankton dynamics as well as growth indices (RNA∶DNA ratio) in dominant zooplankton in relation to the Prymnesium abundance and biomass. Contrary to the hypothesized relationships, no measurable negative responses to P. polylepis were observed for either the total phytoplankton stocks or the zooplankton community. The only negative response, possibly associated with P. polylepis occurrence, was significantly lower abundance of dinoflagellates both during and after the bloom in 2008. Moreover, contrary to the expected negative effects, there were significantly higher total phytoplankton abundance as well as significantly higher winter abundance and winter-spring RNA∶DNA ratio in dominant zooplankton species in 2008, indicating that P. polylepis bloom coincided with favourable feeding conditions for zooplankton. Thus, primary consumers, and consequently also zooplanktivores (e.g., larval fish and mysids), may benefit from haptophyte blooms, particularly in winter, when phytoplankton is scarce.

]]>
<![CDATA[Modified FlowCAM procedure for quantifying size distribution of zooplankton with sample recycling capacity]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc31a

We have developed a modified FlowCAM procedure for efficiently quantifying the size distribution of zooplankton. The modified method offers the following new features: 1) prevents animals from settling and clogging with constant bubbling in the sample container; 2) prevents damage to sample animals and facilitates recycling by replacing the built-in peristaltic pump with an external syringe pump, in order to generate negative pressure, creates a steady flow by drawing air from the receiving conical flask (i.e. vacuum pump), and transfers plankton from the sample container toward the main flowcell of the imaging system and finally into the receiving flask; 3) aligns samples in advance of imaging and prevents clogging with an additional flowcell placed ahead of the main flowcell. These modifications were designed to overcome the difficulties applying the standard FlowCAM procedure to studies where the number of individuals per sample is small, and since the FlowCAM can only image a subset of a sample. Our effective recycling procedure allows users to pass the same sample through the FlowCAM many times (i.e. bootstrapping the sample) in order to generate a good size distribution. Although more advanced FlowCAM models are equipped with syringe pump and Field of View (FOV) flowcells which can image all particles passing through the flow field; we note that these advanced setups are very expensive, offer limited syringe and flowcell sizes, and do not guarantee recycling. In contrast, our modifications are inexpensive and flexible. Finally, we compared the biovolumes estimated by automated FlowCAM image analysis versus conventional manual measurements, and found that the size of an individual zooplankter can be estimated by the FlowCAM image system after ground truthing.

]]>
<![CDATA[Toward a phenological mismatch in estuarine pelagic food web?]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc91f

Alterations of species phenology in response to climate change are now unquestionable. Until now, most studies have reported precocious occurrence of life cycle events as a major phenological response. Desynchronizations of biotic interactions, in particular predator-prey relationships, are however assumed to strongly impact ecosystems’ functioning, as formalized by the Match-Mismatch Hypothesis (MMH). Temporal synchronicity between juvenile fish and zooplankton in estuaries is therefore of essential interest since estuaries are major nursery grounds for many commercial fish species. The Gironde estuary (SW France) has suffered significant alterations over the last three decades, including two Abrupt Ecosystem Shifts (AES), and three contrasted intershift periods. The main objective of this study was to depict modifications in fish and zooplankton phenology among inter-shift periods and discuss the potential effects of the resulting mismatches at a community scale. A flexible Bayesian method was used to estimate and compare yearly patterns of species abundance in the estuary among the three pre-defined periods. Results highlighted (1) an earlier peak of zooplankton production and entrance of fish species in the estuary and (2) a decrease in residence time of both groups in the estuary. Such species-specific phenological changes led to changes in temporal overlap between juvenile fish and their zooplanktonic prey. This situation questions the efficiency and potentially the viability of nursery function of the Gironde estuary, with potential implications for coastal marine fisheries of the Bay of Biscay.

]]>
<![CDATA[Land Use Affects Carbon Sources to the Pelagic Food Web in a Small Boreal Lake]]> https://www.researchpad.co/article/5989dadbab0ee8fa60bb9ec0

Small humic forest lakes often have high contributions of methane-derived carbon in their food webs but little is known about the temporal stability of this carbon pathway and how it responds to environmental changes on longer time scales. We reconstructed past variations in the contribution of methanogenic carbon in the pelagic food web of a small boreal lake in Finland by analyzing the stable carbon isotopic composition (δ13C values) of chitinous fossils of planktivorous invertebrates in sediments from the lake. The δ13C values of zooplankton remains show several marked shifts (approx. 10 ‰), consistent with changes in the proportional contribution of carbon from methane-oxidizing bacteria in zooplankton diets. The results indicate that the lake only recently (1950s) obtained its present state with a high contribution of methanogenic carbon to the pelagic food web. A comparison with historical and palaeobotanical evidence indicates that this most recent shift coincided with agricultural land-use changes and forestation of the lake catchment and implies that earlier shifts may also have been related to changes in forest and land use. Our study demonstrates the sensitivity of the carbon cycle in small forest lakes to external forcing and that the effects of past changes in local land use on lacustrine carbon cycling have to be taken into account when defining environmental and ecological reference conditions in boreal headwater lakes.

]]>
<![CDATA[The importance of calcium in improving resistance of Daphnia to Microcystis]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc7f7

Changing environmental calcium (Ca) and rising cyanobacterial blooms in lake habitats could strongly reduce Daphnia growth and survival. Here, we assessed the effects of maternal Ca in Daphnia on transfer of resistance to their offspring against Microcystis aeruginosa PCC7806 (M. aeruginosa). Laboratory microcosm experiments were performed to examine effects in Daphnia carinata (D. carinata) and Daphnia pulex (D. pulex), and that how Ca induce responses in their offspring. The results showed that growth and survival were increased in offspring from exposed Daphnia as compared to unexposed, when raised in high Ca and increasing M. aeruginosa concentration. Among exposed Daphnia, offspring from high Ca mothers, produced more neonates with large size and higher survival as compared to offspring from low maternal Ca. Exposed D. carinata and D. pulex offspring, when reared in Ca deficient medium and increasing M. aeruginosa concentration, time to first brood increased, size become large and total offspring decreased subsequently in three alternative broods in offspring from low maternal Ca. In contrast, growth and reproduction in offspring from high Ca exposed mothers were consistent in three alternative broods. Despite species specific responses in growth, survival and variant life history traits in two Daphnia species, our results not only show maternal induction in Daphnia but also highlight that offspring response to M. aeruginosa varies with maternal Ca. This study demonstrates that Ca have role in Daphnia maternal induction against Microcystis, and recent Ca decline and increasing Microcystis concentration in lakes may decrease Daphnia growth and survival. Our data provide insights into the interactive effect of maternal Ca and Microcystis exposure on Daphnia and their outcome on offspring life history traits and survival.

]]>
<![CDATA[Catchment vegetation and temperature mediating trophic interactions and production in plankton communities]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc916

Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes. Natural variation in temperature and catchment land-cover was used as a natural experiment to exemplify how interactions between and production of primary producers (phytoplankton) and grazers (zooplankton) are driven by direct (temperature) and indirect (catchment vegetation) factors, as well as the presence or absence of apex predators (fish). The results show that increased vegetation cover increased phytoplankton growth rate by mediating lake nutrient concentration. At the same time, increased temperature also increased grazing rates by zooplankton. Presence of fish increased zooplankton mortality rates, thus reducing grazing. The Arctic is currently experiencing an increase in both temperature and shrub vegetation cover due to climate change, a trend, which is likely to continue. Our results point towards a possible future general weakening of zooplankton grazing on phytoplankton and greening of arctic lakes with increasing temperatures. At the same time, the impact of the presence of an apex predator indicate considerable local variation in the response. This makes direction and strength of global change impacts difficult to forecast.

]]>
<![CDATA[Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea]]> https://www.researchpad.co/article/5989dab5ab0ee8fa60bac7d7

Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity) and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index) for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2°) hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948–2013). Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod). We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks’ dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models.

]]>
<![CDATA[Potential for Local Fertilization: A Benthocosm Test of Long-Term and Short-Term Effects of Mussel Excretion on the Plankton]]> https://www.researchpad.co/article/5989da1eab0ee8fa60b7e0c6

Mussel aquaculture has expanded worldwide and it is important to assess its impact on the water column and the planktonic food web to determine the sustainability of farming practices. Mussel farming may affect the planktonic food web indirectly by excreting bioavailable nutrients in the water column (a short-term effect) or by increasing nutrient effluxes from biodeposit-enriched sediments (a long-term effect). We tested both of these indirect effects in a lagoon by using plankton-enclosing benthocosms that were placed on the bottom of a shallow lagoon either inside of a mussel farm or at reference sites with no history of aquaculture. At each site, half of the benthocosms were enriched with seawater that had held mussels (excretion treatment), the other half received non-enriched seawater as a control treatment. We monitored nutrients ([PO43-] and [NH4+]), dissolved oxygen and plankton components (bacteria, the phytoplankton and the zooplankton) over 5 days. We found a significant relationship between long-term accumulation of mussel biodeposits in sediments, water-column nutrient concentrations and plankton growth. Effects of mussel excretion were not detected, too weak to be significant given the spatial and temporal variability observed in the lagoon. Effects of mussels on the water column are thus likely to be coupled to benthic processes in such semi-enclosed water bodies.

]]>